- Oplysninger
- Spørg Stuwie
Var dette dokument nyttigt?
Equationsheet - equation sheet for practice material
Kursus: Introduktion til vindenergi (46000)
24 Dokumenter
Studerende delte 24 dokumenter i dette kursus
Universitet: Danmarks Tekniske Universitet
Var dette dokument nyttigt?
ENGR 310 authorized equation sheet Term 1 - 2017/2018
Section 1 - Integral Relations
•Hydrostatic pressure equation:
∆p=ρg∆z
•Hydrostatic force on a panel:
F/Apanel = (patm +ρghCG)
where the force acts on centre of pressure:
xCP =−Ixy sin θ
hCGA, yCP =−Ixx sin θ
hCGA
•Mass conservation for a CV:
Z
CV
∂ρ
∂t dV +I
CS
ρ(~
V·~n)dS = 0
which reduces to ˙min = ˙mout for steady flow, where
˙m=ρ(~
V·~n)A.
•Linear momentum conservation for steady,
one-dimensional flow:
X~
FCV ="X
i
˙mi~
Vi#out −"X
i
˙mi~
Vi#in
•Angular momentum conservation for steady,
one-dimensional flow:
X~
M0="X
i
(~ri×~
Vi) ˙mi#out −"X
i
(~ri×~
Vi) ˙mi#in
•Energy conservation for a control volume:
˙
Q−˙
Wshaft −˙
Wviscous =∂
∂t
Z
CV
(u+V2
2+gz)ρdV
+I
CS
(h+V2
2+gz)ρ(~
V·~n)dS
•Steady flow energy equation (SFEE):
p
ρg +V2
2g+zin
=p
ρg +V2
2g+zout
+hfriction −hpump +hturbine
•Bernoulli equation:
p1
ρ1
+V2
1
2+gz1=p2
ρ2
+V2
2
2+gz2
Frictionless, incompressible flow with no work or heat
transfer. Holds for steady flow along a single streamline.
•Frictional (major) losses:
∆pL=fL
DρV2
2, f =8τw
ρV 2
•Minor losses: Relates losses in valves, fittings, elbows, etc.
Defined in terms of resistance coefficients or loss factor,
KL=hL
V2/(2g), hL= head loss
•Total head loss:
hL,major +hL,minor =fL
D+XKLV2
2g
Section 2 - Turbomachinery
•Flow rate: ˙
V= ˙m/ρ = (~
V·~n)A
•Pump head: net energy imparted to the flow
H=p
ρg +V2
2g+zout −p
ρg +V2
2g+zin
•Useful pump power (water horsepower):
˙
Wwater =ρg ˙
V H
•Total mechanical power (shaft horsepower):
bhp =ωTshaft
•Pump efficiency:
ηpump =˙
Wwater
˙
Wshaft
=ρg ˙
V H
ωTshaft
•Pump steady operating point is where the available head
matches the required:
Hrequired =p2−p1
ρg +αV 2
2−αV 2
1
2g+ (z2−z1) + hL
where α= 1 for turbulent flows.
•Net positive suction head:
NP SH =p
ρg +V2
2ginlet −pv
ρg
where pvis the vapour pressure.
•Euler pump equation:
H=ηpump
g(ωr2V2,t −ωr1V1,t)
=ηpump
2gV2
2−V2
1+ω2r2
2−ω2r2
1−V2
2,r −V2
1,r
•Dimensionless pump coefficients:
Head coefficient: CH=gH
ω2D2
Flow coefficient: CQ=˙
V
ωD3
Power coeffieicnt: CP=bhp
ρω3D5
Pump efficiency: ηpump =CQCH
CP
=ρ˙
V gH
bhp
•Pump specific speed:
Nsp =C1/2
Q
C3/4
H
=ω˙
V1/2
(gH)3/4
Nsp,US =( ˙n, rpm)( ˙
V , gpm)1/2
(H, ft)3/4
Nsp,Eur =( ˙n, Hz)( ˙
V , m3/s)1/2
(H, m)3/4
Conversion factors:
Nsp Nsp,US Nsp,Eur
Nsp 1 2734 1/2π
Nsp,US 3.658×10−41 5.822×10−5
Nsp,Eur 2π17180 1
•Pump/turbine affinity laws:
˙
VB
˙
VA
=ωB
ωADB
DA3
HB
HA
=ωB
ωA2DB
DA2
bhpB
bhpA
=ρB
ρAωB
ωA3DB
DA5
•Euler turbine equation:
˙
Wshaft =ρω ˙
V(r2V2,t −r1V1,t)
•Impulse (Pelton) turbine shaft power:
˙
Wshaft =ρωr ˙
V(Vjet −rω)(1 −cos β)
where max efficiency is achieved when β= 160◦-165◦and
Vjet = 2ωr.
•Reaction (Francis, Kaplan) turbine power:
˙
Wwater =ρg ˙
V H
˙
Wshaft =Tshaftω
ηturbine =˙
Wshaft
˙
Wwater
=bhp
ρgH ˙
V