Spring videre til dokument

Equationsheet - equation sheet for practice material

equation sheet for practice material
Kursus

Introduktion til vindenergi (46000)

24 Dokumenter
Studerende delte 24 dokumenter i dette kursus
Akademisk år: 2022/2023
Uploadet af:
Anonym studerende
Dette dokument er blevet uploadet af en studerende, ligesom dig, der besluttede at forblive anonym.
Danmarks Tekniske Universitet

Kommentarer

Venligst log på eller registrer dig for at poste kommentarer.

Forhåndsvisning af tekst

Section 1 - Integral Relations

  • Hydrostatic pressure equation:

∆p = ρg∆z

  • Hydrostatic force on a panel:

F/A panel = (p atm + ρgh CG )

where the force acts on centre of pressure:

x CP = −

I xy sin θ

h CG A ,

y CP = −

I xx sin θ

h CG A

  • Mass conservation for a CV:

CV

∂ρ

∂t dV

CS

ρ(

~ V · ~n)dS = 0

which reduces to m ̇ in

= m ̇ out for steady flow, where

m ̇ = ρ(

~ V · ~n)A.

  • Linear momentum conservation for steady,

one-dimensional flow:

~ F CV =

[∑

i

m ̇ i

~ V i

]

out

[∑

i

m ̇ i

~ V i

]

in

  • Angular momentum conservation for steady,

one-dimensional flow:

~ M 0 =

[∑

i

(~r i ×

~ V i ) ̇m i

]

out

[∑

i

(~r i ×

~ V i ) ̇m i

]

in

  • Energy conservation for a control volume:

̇ Q −

̇ W shaft

̇ W viscous =

∂t

CV

(u +

V

2

2

  • gz)ρdV

CS

(h +

V

2

2

  • gz)ρ(

~ V · ~n)dS

  • Steady flow energy equation (SFEE):

(

p

ρg

V

2

2 g

  • z

)

in

=

(

p

ρg

V

2

2 g

  • z

)

out

  • h friction − h pump + h turbine
  • Bernoulli equation:

p 1

ρ 1

V

2

1

2

  • gz 1 =

p 2

ρ 2

V

2

2

2

  • gz 2

Frictionless, incompressible flow with no work or heat

transfer. Holds for steady flow along a single streamline.

  • Frictional (major) losses:

∆p L

= f L

D ρ V

2

2

, f = 8

τ w

ρV

2

  • Minor losses: Relates losses in valves, fittings, elbows, etc.

Defined in terms of resistance coefficients or loss factor,

K L

=

h L

V

2 /(2g)

, h L

= head loss

  • Total head loss:

h L,major + h L,minor =

(

f L

D

K L

)

V

2

2 g

Section 2 - Turbomachinery

  • Flow rate:

̇ V = m/ρ ̇ = (

~ V · ~n)A

  • Pump head: net energy imparted to the flow

H =

(

p

ρg

V

2

2 g

  • z

)

out

(

p

ρg

V

2

2 g

  • z

)

in

  • Useful pump power (water horsepower):

̇ W water = ρg

̇ V H

  • Total mechanical power (shaft horsepower):

bhp = ωT shaft

  • Pump efficiency:

η pump =

̇ W water

̇ W shaft

=

ρg

̇ V H

ωT shaft

  • Pump steady operating point is where the available head

matches the required:

H required =

p 2 − p 1

ρg

αV

2

2

− αV

2

1

2 g

  • (z 2 − z 1 ) + h L

where α = 1 for turbulent flows.

  • Net positive suction head:

N P SH =

(

p

ρg

V

2

2 g

)

inlet

p v

ρg

where p v is the vapour pressure.

  • Euler pump equation:

H =

η pump

g

(ωr 2 V 2 ,t − ωr 1 V 1 ,t )

=

η pump

2 g

[(

V

2

2

− V

2

1

)

(

ω

2

r

2

2

− ω

2

r

2

1

)

(

V

2

2 ,r

− V

2

1 ,r

)]

  • Dimensionless pump coefficients:

Head coefficient: C H =

gH

ω

2 D

2

Flow coefficient: C Q =

̇ V

ωD

3

Power coeffieicnt: C P =

bhp

ρω

3 D

5

Pump efficiency: η pump =

C Q C H

C P

=

ρ

̇ V gH

bhp

  • Pump specific speed:

N sp =

C

1 / 2

Q

C

3 / 4

H

=

ω

̇ V

1 / 2

(gH)

3 / 4

N sp,U S = ( ̇

n, rpm)( ̇V , gpm)

1 / 2

(H, ft)

3 / 4

N sp,Eur = ( ̇

n, Hz)( ̇V , m

3 /s)

1 / 2

(H, m)

3 / 4

Conversion factors:

N sp N sp,U S

N sp,Eur

N sp 1 2734 1/2π

N sp,U S 3× 10

− 4 1 5× 10

− 5

N sp,Eur

2 π 17180 1

  • Pump/turbine affinity laws:

̇ V B

̇ V A

=

ω B

ω A

(

D B

D A

) 3

H B

H A

=

(

ω B

ω A

) 2

(

D B

D A

) 2

bhp B

bhp A

=

ρ B

ρ A

(

ω B

ω A

) 3

(

D B

D A

) 5

  • Euler turbine equation:

̇ W shaft

= ρω

̇ V (r 2

V 2 ,t

− r 1

V 1 ,t

)

  • Impulse (Pelton) turbine shaft power:

̇ W shaft = ρωr

̇ V (V jet − rω)(1 − cos β)

where max efficiency is achieved when β = 160

◦ -

◦ and

V jet = 2ωr.

  • Reaction (Francis, Kaplan) turbine power:

̇ W water = ρg

̇ V H

̇ W shaft

= T shaft

ω

η turbine

=

̇ W shaft

̇ W water

=

bhp

ρgH

̇ V

  • Turbine scaling laws:

Head coefficient: C H

=

gH

ω

2 D

2

Flow coefficient: C Q =

̇ V

ωD

3

Power coefficient: C P =

bhp

ρω

3 D

5

Turbine efficiency: η turbine =

C P

C Q C H

  • Turbine specific speed:

N st =

C

1 / 2

P

C

5 / 4

H

=

ω(bhp)

1 / 2

ρ

1 / 2 (gH)

5 / 4

N st,U S

= ( ̇

n, rpm)(bhp, hp)

1 / 2

(H, ft)

5 / 4

N st,SI

= ( ̇

n, rpm)( ̇V , m

3 /s)

1 / 2

(H, m)

3 / 4

Section 3 - Differential Analysis

  • Integral form of the continuity equation:

CV

∂ρ

∂t dV

CS

ρ(

~ V · ~n) dA = 0

  • Gauss’ divergence theorem:

CV

~ ∇ · G ij

dV =

CS

G ij

· ~n dA

where G ij is a tensor of arbitrary rank.

  • Differential continuity equation:

∂ρ

∂t

~ ∇ · (ρ~V ) = 0

  • Differential continuity equation in Cartesian coordinates:

∂ρ

∂t

∂(ρu)

∂x

∂(ρv)

∂y

∂(ρw)

∂z

= 0

  • Differential continuity equation in cylindrical coordinates:

∂ρ

∂t

  • 1

r

∂(rρu r )

∂r

  • 1

r

∂(ρu θ

)

∂θ

∂(ρu z )

∂z

= 0

  • Material derivative:

DG ij

Dt

=

∂G ij

∂t

~ V ·

~ ∇G ij

where G ij

is a tensor of arbitrary rank.

  • Constitutive relation for Newtonian fluids:

τ ij

= 2μǫ ij

where τ ij is the shear stress tensor and the strain rate

tensor is ǫ ij = 1

2

(

∂u i

∂x j

∂u j

∂x i

)

null
  • Incompressible Navier-Stokes equation in vector form:

ρ D ~

V

Dt

= −∇p + ρ~g + μ ~∇

2 ~ V

  • Incompressible Navier-Stokes equation in Cartesian coordinates:

x-component: ρ

(

∂u

∂t

  • u ∂u

∂x

  • v ∂u

∂y

  • w ∂u

∂z

)

= −

∂p

∂x

  • ρg x + μ

(

2 u

∂x

2

2 u

∂y

2

2 u

∂z

2

)

y-component: ρ

(

∂v

∂t

  • u ∂v

∂x

  • v ∂v

∂y

  • w ∂v

∂z

)

= −

∂p

∂y

  • ρg y + μ

(

2 v

∂x

2

2 v

∂y

2

2 v

∂z

2

)

z-component: ρ

(

∂w

∂t

  • u ∂w

∂x

  • v ∂w

∂y

  • w ∂w

∂z

)

= −

∂p

∂z

  • ρg z + μ

(

2 w

∂x

2

2 w

∂y

2

2 w

∂z

2

)

  • Incompressible Navier-Stokes equation in cylindrical coordinates:

r-component: ρ

(

∂u r

∂t

  • u r

∂u r

∂r

u θ

r

∂u r

∂θ

u

2

θ

r

  • u z

∂u r

∂z

)

= −

∂p

∂r

  • ρg r +

μ

[

1

r

∂r

(

r ∂u

r

∂r

)

u r

r

2

1

r

2

2 u r

∂θ

2

2

r

2

∂u θ

∂θ

2 u r

∂z

2

]

θ-component: ρ

(

∂u θ

∂t

  • u r

∂u θ

∂r

u θ

r

∂u θ

∂θ

u θ u r

r

  • u z

∂u θ

∂z

)

= −

1

r

∂p

∂θ

  • ρg θ +

μ

[

1

r

∂r

(

r ∂u

θ

∂r

)

u θ

r

2

1

r

2

2 u θ

∂θ

2

2

r

2

∂u r

∂θ

2 u θ

∂z

2

]

z-component: ρ

(

∂u z

∂t

  • u r

∂u z

∂r

u θ

r

∂u z

∂θ

  • u z

∂u z

∂z

)

= −

∂p

∂z

  • ρg z +

μ

[

1

r

∂r

(

r ∂u

z

∂r

)

1

r

2

2 u z

∂θ

2

2 u z

∂z

2

]

  • Pressure and velocity distribution for Couette flow with a wall speed of V and gap h:

p = p 0 − ρgz

u =

V

h y

  • Pressure and velocity distribution for Couette flow with an applied pressure gradient:

p = p 0 +

(

∂p

∂x

)

x − ρgz

u =

V y

h

1

2 μ

(

∂p

∂x

)

(y

2 − hy)

  • Pressure and velocity distribution for a laminar film flowing down a vertical wall by gravity:

p = p atm

w =

ρg

2 μ x

(x − 2 h)

  • Pressure and velocity distribution for Poiseuille flow:

p = p 0

u x =

1

4 μ

dp

dx

(r

2

− R

2

)

  • Poiseuille max and average velocity and shear stress:

u max =

−R

2

4 μ

dp

dx

u avg =

−R

2

8 μ

dp

dx

τ rx =

R

2

dp

dx

  • Friction drag of flat plates:

Laminar boundary layer: C f =

  1. 33

Re L

, Re L . 5 × 10

5

Turbulent boundary layer: C f =

  1. 074

Re

1 / 5

L

, Re L & 10

7

Transitional boundary layer: C f

=

  1. 074

Re

1 / 5

L

1742

Re L

, 5 × 10

5 . Re L

. 10

7

  • Wing aspect ratio: (AR = b

2 /A) where b is the wingspan and A is the planform area (=bc

for rectangular wing).

Section 6 - Compressible Flows

  • Total or stagnation quantities:

Enthalpy: h 0 = h +

V

2

2

, Pressure: p 0 = p + ρ V

2

2

, Temperature: T 0 = T +

V

2

2 C

####### p

####### p

####### p

  • Isentropic flow relations for ideal gases with constant specific heats:

p 0

p

=

(

####### T

0

T

)

k

k − 1 ,

####### ρ

0

ρ

=

(

T 0

T

)

1

k − 1

where k = C p /C v is the specific heat ratio.

  • Speed of sound:

c =

√ (

∂p

∂ρ

)

s

︸ ︷︷ ︸

General definition

=

k

(

∂p

∂ρ

)

T

︸ ︷︷ ︸

Constant k

=

kRT

︸ ︷︷ ︸

Ideal gas

where R = R/M , R = 8314 J/kmol·K is the universal gas constant and M is the molar

mass.

  • Mach number: V /c

  • Area change for 1D isentropic flow:

dA

A

= −

dV

V

(1 − M a

2 )

  • Isentropic flow relations:

T 0

T

= 1 +

(

k − 1

2

)

####### M a

####### M a

2

,

p 0

p

=

[

1 +

(

k − 1

2

)

M a

2

]

k

k − 1 ,

ρ 0

ρ

=

[

1 +

(

k − 1

2

)

M a

2

]

1

k − 1

These are tabulated in Table A-13 for k = 1.

  • Critical properties for choked isentropic flow in a nozzle:

T

T 0

=

2

k + 1

,

p

p 0

=

(

2

k + 1

)

k

k − 1 ,

ρ

ρ 0

=

(

2

k + 1

)

1

k − 1

  • Mass flow rate for isentropic flow in a nozzle:

m ̇ =

p 0 M aA

k/(RT 0 )

[

1 + (k − 1)

M a

2

2

] (k+1)/[2(k−1)]

, m ̇ max = A

∗ p 0

k

RT 0

(

2

k + 1

) (k+1)/[2(k−1)]

  • Flow area relative to throat in a converging isentropic flow nozzle:

A

A

=

1

M a

[(

2

k + 1

) (

1 +

k − 1

2

M a

2

)]

k + 1

2(k − 1)

  • Mach number based on throat speed of sound: M a

∗ =

V

c

= M a

T

T

  • Normal shock relations:

T 01 = T 02 , M a 2 =

(k − 1)M a

2

1

  • 2

2 kM a

2

1

− k + 1

p 2

p 1

= 1 +

kM a 1

2

1 + kM a

2

2

= 2

kM a

2

1

− k + 1

k + 1

,

ρ 2

ρ 1

=

p 2

####### /p

####### /p

####### /p

1

T 2

####### /T

1

=

(k + 1)M a

2

1

2 + (k + 1)M a

2

1

=

V 1

V 2

T 2

T 1

= 2 +

M a

2

1

(k − 1)

2 + M a

2

2

(k − 1)

,

p 02

p 01

=

M a 1

M a 2

[

1 + M a

2

2

(k − 1)/ 2

1 + M a

2

1

(k − 1)/ 2

] (k−1)/[2(k−1)]

p 02

p 1

= (1 +

kM a

2

1

)[1 + M a

2

2

(k − 1)/2]

k/(k−1)

1 + kM a

2

2

These are tabulated in Table A-14 for k = 1.

  • Oblique shock components:

M a 1 , n = M a 1 sin β, M a 2 , n = M a 2 sin(β − θ)

where β is the shock angle relative to oncoming flow and θ is the deflection angle relative

to oncoming flow.

  • Relationship between M a, θ, and β in oblique shocks:

tan θ = 2 cot

β(M a

2

1

sin

2 β − 1)

M a

2

1

(k + cos 2β) + 2

This is plotted in Figure 1.

M a p/p A/A∗ - Table A-13: One-dimensional isentropic compressible flow functions for an ideal gas with k = 1. - - T /T - ρ/ρ - 0 9-01 9-01 9-01 5+ 0 1+00 1+00 1+00 ∞ - 0 9-01 9-01 9-01 2+ - 0 9-01 9-01 9-01 2+ - 0 8-01 9-01 9-01 1+ - 0 8-01 9-01 8-01 1+ - 0 7-01 9-01 8-01 1+ - 0 7-01 9-01 7-01 1+ - 0 6-01 8-01 7-01 1+ - 0 5-01 8-01 6-01 1+ - 1 5-01 8-01 6-01 1+ - 1 4-01 8-01 5-01 1+ - 1 4-01 7-01 5-01 1+ - 1 3-01 7-01 4-01 1+ - 1 3-01 7-01 4-01 1+ - 1 2-01 6-01 3-01 1+ - 1 2-01 6-01 3-01 1+ - 1 2-01 6-01 3-01 1+ - 1 1-01 6-01 2-01 1+ - 1 1-01 5-01 2-01 1+ - 2 1-01 5-01 2-01 1+ - 2 1-01 5-01 2-01 1+ - 2 9-02 5-01 1-01 2+ - 2 7-02 4-01 1-01 2+ - 2 6-02 4-01 1-01 2+ - 2 5-02 4-01 1-01 2+ - 2 5-02 4-01 1-01 2+ - 2 4-02 4-01 1-01 3+ - 2 3-02 3-01 9-02 3+ - 2 3-02 3-01 8-02 3+ - 3 2-02 3-01 7-02 4+ - 3 2-02 3-01 6-02 4+ - 3 2-02 3-01 6-02 5+ - 3 1-02 3-01 5-02 5+ - 3 1-02 3-01 5-02 6+ - 3 1-02 2-01 4-02 6+ - 3 1-02 2-01 4-02 7+ - 3 9-03 2-01 3-02 8+ - 3 8-03 2-01 3-02 8+ - 3 7-03 2-01 3-02 9+ - 4 6-03 2-01 2-02 1+ - 4 5-03 2-01 2-02 1+ - 4 5-03 2-01 2-02 1+ - 4 4-03 2-01 2-02 1+ - 4 3-03 2-01 1-02 1+ - 4 3-03 1-01 1-02 1+ - 4 3-03 1-01 1-02 1+ - 4 2-03 1-01 1-02 1+ - 4 2-03 1-01 1-02 2+ - 4 2-03 1-01 1-02 2+ - 5 1-03 1-01 1-02 2+ - Table A-14: One-dimensional normal shock functions for an ideal gas with k = 1. - M a - M a - p - /p - p - /p - p - /p - T - /T - ρ - /ρ - 1 1+00 1+00 1+00 1+00 1+00 1+ - 1 9-01 1+00 9-01 2+00 1+00 1+ - 1 8-01 1+00 9-01 2+00 1+00 1+ - 1 7-01 1+00 9-01 2+00 1+00 1+ - 1 7-01 2+00 9-01 3+00 1+00 1+ - 1 7-01 2+00 9-01 3+00 1+00 1+ - 1 6-01 2+00 8-01 3+00 1+00 2+ - 1 6-01 3+00 8-01 4+00 1+00 2+ - 1 6-01 3+00 8-01 4+00 1+00 2+ - 1 5-01 4+00 7-01 5+00 1+00 2+ - 2 5-01 4+00 7-01 5+00 1+00 2+ - 2 5-01 4+00 6-01 6+00 1+00 2+ - 2 5-01 5+00 6-01 6+00 1+00 2+ - 2 5-01 6+00 5-01 7+00 1+00 3+ - 2 5-01 6+00 5-01 7+00 2+00 3+ - 2 5-01 7+00 4-01 8+00 2+00 3+ - 2 5-01 7+00 4-01 9+00 2+00 3+ - 2 4-01 8+00 4-01 9+00 2+00 3+ - 2 4-01 8+00 3-01 1+01 2+00 3+ - 2 4-01 9+00 3-01 1+01 2+00 3+ - 3 4-01 1+01 3-01 1+01 2+00 3+ - 3 4-01 1+01 3-01 1+01 2+00 3+ - 3 4-01 1+01 2-01 1+01 2+00 4+ - 3 4-01 1+01 2-01 1+01 3+00 4+ - 3 4-01 1+01 2-01 1+01 3+00 4+ - 3 4-01 1+01 2-01 1+01 3+00 4+ - 3 4-01 1+01 1-01 1+01 3+00 4+ - 3 4-01 1+01 1-01 1+01 3+00 4+ - 3 4-01 1+01 1-01 1+01 3+00 4+ - 3 4-01 1+01 1-01 2+01 3+00 4+ - 4 4-01 1+01 1-01 2+01 4+00 4+ - 4 4-01 1+01 1-01 2+01 4+00 4+ - 4 4-01 2+01 1-01 2+01 4+00 4+ - 4 4-01 2+01 1-01 2+01 4+00 4+ - 4 4-01 2+01 9-02 2+01 4+00 4+ - 4 4-01 2+01 9-02 2+01 4+00 4+ - 4 4-01 2+01 8-02 2+01 5+00 4+ - 4 4-01 2+01 7-02 2+01 5+00 4+ - 4 4-01 2+01 7-02 3+01 5+00 4+ - 4 4-01 2+01 6-02 3+01 5+00 4+ - 5 4-01 2+01 6-02 3+01 5+00 5+

Var dette dokument nyttigt?

Equationsheet - equation sheet for practice material

Kursus: Introduktion til vindenergi (46000)

24 Dokumenter
Studerende delte 24 dokumenter i dette kursus
Var dette dokument nyttigt?
ENGR 310 authorized equation sheet Term 1 - 2017/2018
Section 1 - Integral Relations
Hydrostatic pressure equation:
p=ρgz
Hydrostatic force on a panel:
F/Apanel = (patm +ρghCG)
where the force acts on centre of pressure:
xCP =Ixy sin θ
hCGA, yCP =Ixx sin θ
hCGA
Mass conservation for a CV:
Z
CV
ρ
t dV +I
CS
ρ(~
V·~n)dS = 0
which reduces to ˙min = ˙mout for steady flow, where
˙m=ρ(~
V·~n)A.
Linear momentum conservation for steady,
one-dimensional flow:
X~
FCV ="X
i
˙mi~
Vi#out "X
i
˙mi~
Vi#in
Angular momentum conservation for steady,
one-dimensional flow:
X~
M0="X
i
(~ri×~
Vi) ˙mi#out "X
i
(~ri×~
Vi) ˙mi#in
Energy conservation for a control volume:
˙
Q˙
Wshaft ˙
Wviscous =
t
Z
CV
(u+V2
2+gz)ρdV
+I
CS
(h+V2
2+gz)ρ(~
V·~n)dS
Steady flow energy equation (SFEE):
p
ρg +V2
2g+zin
=p
ρg +V2
2g+zout
+hfriction hpump +hturbine
Bernoulli equation:
p1
ρ1
+V2
1
2+gz1=p2
ρ2
+V2
2
2+gz2
Frictionless, incompressible flow with no work or heat
transfer. Holds for steady flow along a single streamline.
Frictional (major) losses:
pL=fL
DρV2
2, f =8τw
ρV 2
Minor losses: Relates losses in valves, fittings, elbows, etc.
Defined in terms of resistance coefficients or loss factor,
KL=hL
V2/(2g), hL= head loss
Total head loss:
hL,major +hL,minor =fL
D+XKLV2
2g
Section 2 - Turbomachinery
Flow rate: ˙
V= ˙m/ρ = (~
V·~n)A
Pump head: net energy imparted to the flow
H=p
ρg +V2
2g+zout p
ρg +V2
2g+zin
Useful pump power (water horsepower):
˙
Wwater =ρg ˙
V H
Total mechanical power (shaft horsepower):
bhp =ωTshaft
Pump efficiency:
ηpump =˙
Wwater
˙
Wshaft
=ρg ˙
V H
ωTshaft
Pump steady operating point is where the available head
matches the required:
Hrequired =p2p1
ρg +αV 2
2αV 2
1
2g+ (z2z1) + hL
where α= 1 for turbulent flows.
Net positive suction head:
NP SH =p
ρg +V2
2ginlet pv
ρg
where pvis the vapour pressure.
Euler pump equation:
H=ηpump
g(ωr2V2,t ωr1V1,t)
=ηpump
2gV2
2V2
1+ω2r2
2ω2r2
1V2
2,r V2
1,r
Dimensionless pump coefficients:
Head coefficient: CH=gH
ω2D2
Flow coefficient: CQ=˙
V
ωD3
Power coeffieicnt: CP=bhp
ρω3D5
Pump efficiency: ηpump =CQCH
CP
=ρ˙
V gH
bhp
Pump specific speed:
Nsp =C1/2
Q
C3/4
H
=ω˙
V1/2
(gH)3/4
Nsp,US =( ˙n, rpm)( ˙
V , gpm)1/2
(H, ft)3/4
Nsp,Eur =( ˙n, Hz)( ˙
V , m3/s)1/2
(H, m)3/4
Conversion factors:
Nsp Nsp,US Nsp,Eur
Nsp 1 2734 1/2π
Nsp,US 3.658×1041 5.822×105
Nsp,Eur 2π17180 1
Pump/turbine affinity laws:
˙
VB
˙
VA
=ωB
ωADB
DA3
HB
HA
=ωB
ωA2DB
DA2
bhpB
bhpA
=ρB
ρAωB
ωA3DB
DA5
Euler turbine equation:
˙
Wshaft =ρω ˙
V(r2V2,t r1V1,t)
Impulse (Pelton) turbine shaft power:
˙
Wshaft =ρωr ˙
V(Vjet )(1 cos β)
where max efficiency is achieved when β= 160-165and
Vjet = 2ωr.
Reaction (Francis, Kaplan) turbine power:
˙
Wwater =ρg ˙
V H
˙
Wshaft =Tshaftω
ηturbine =˙
Wshaft
˙
Wwater
=bhp
ρgH ˙
V