Spring videre til dokument

Introduction To Wind Energy S21 exam

Notes for the S21 exam. Inlcudes every formulas from all the lectures,...
Kursus

Introduktion til vindenergi (46000)

24 Dokumenter
Studerende delte 24 dokumenter i dette kursus
Akademisk år: 2020/2021
Uploadet af:
Anonym studerende
Dette dokument er blevet uploadet af en studerende, ligesom dig, der besluttede at forblive anonym.
Danmarks Tekniske Universitet

Kommentarer

Venligst log på eller registrer dig for at poste kommentarer.

Forhåndsvisning af tekst

Table of contents

  • TABLE OF CONTENTS Course
  • 1 Wind Profiles
    • 1 Velocity profile for mean wind speed and power law
    • 1 Stable, neutral and unstable conditions
  • 2 Wind resources
    • 2 Wind distribution: Weibull
    • 2 Annual Energy Production
    • 2 Turbulence
  • 3 Technology of wind turbines
    • 3 Rotors and efficiency
    • 3 Gear ratios
    • 3 The planetary gear
    • 3 Speed and torque relations
  • 4 Aerodynamics
    • 4 1D momentum theory
    • 4 Theory on rotating wake
    • 4 Forces acting on the blade
  • 5 Economy
    • 5 Table of running expenses
  • 6 Structural mechanics
    • 6 Second moment of inertia
      • 6.1 Square box
      • 6.1 Cross section for a circle
      • 6.1 Approximated circular cross section
      • 6.1 Sandwich beam blade
      • 6.1 Parallel axis theorem for second moment of inertia
    • 6 The effective modulus of elasticity, Ec
    • 6 Strain in the upper most part of a beam
    • 6 Formula for deflection along the blade and max deflection
    • 6 Generic beam case: Cantilever beam with point load
    • 6 Generic beam case: Cantilever beam with distributed load
    • 6 Euler-Bernolli Theory and Natural frequency
  • 7 Composites and mixtures
    • 7 Stiffness of anisotropic materials
    • 7 Fiber and lay up mixture

1 WIND PROFILES Course 34322

1 Stable, neutral and unstable conditions

Why is an unstable profile more uniform than a stable one? In unstable conditions there is much more mixing in the vertical direction. Hereby momentum is transferred across the vertical direction. This induces an effective shear stress that acts to reduce the vertical velocity gradient.

Figure 2: Stable, neutral and unstable conditions

2 WIND RESOURCES Course 34322

2 Wind resources

Learning objectives:

  • To calculate turbulence intensity and describe turbulent time scales
  • Apply a Weibull distribution for mean wind speed
  • To describe the principles of the WaS Pmethod
  • To calculate the annual energy production (AEP) for a turbine

2 Wind distribution: Weibull

The parameters of the Weibull distribution is A and k. The value A is NOT the area of the wind turbine.

Figure 3: Theory on Weibull

Mean Weibull value Gamma value can be found with se.mathworks/help/matlab/ref/gamma.html

E(v)=AΓ

(

1 + 1 k

)
(3)

3 TECHNOLOGY OF WIND TURBINES Course 34322

3 Technology of wind turbines

3 Rotors and efficiency

Figure 5: Rotor and efficiency

3 Gear ratios

Figure 6: Gear ratios

3 TECHNOLOGY OF WIND TURBINES Course 34322

3 The planetary gear

Figure 7: Planetary gear

3 Speed and torque relations

Figure 8: Speed and torque relation

4 AERODYNAMICS Course 34322

4 Forces acting on the blade

Lift force: L′=dL= 12 ρcClVrel 2 [N/m]

Drag force: D′=dD= 12 ρcCdVrel 2 [N/m]

Thrust contribution: T′=dT=dTcos

(

φ

)

+dDsin

(

φ

)

Normal force: pn=dLcos

(

φ

)

+dDsin

(

φ

)

Tangential force: pt=dLsin

(

φ

)

+dDcos

(

φ

)

5 ECONOMY Course 34322

5 Economy

5 Table of running expenses

6 STRUCTURAL MECHANICS Course 34322

6 Formula for deflection along the blade and max deflection

Along the blade: u(x)= kx

2 120 EI

(

x 3 − 10 L 2 x+ 20 L 3

)

, k= 2 LQ 2 (15)

Maximum deflection umax= 1160 EIQL 3 , Q=F 3 (16)

6 Generic beam case: Cantilever beam with point load

The maximum deflection is given by u= 13 PloadL

3 EI (17)

With a momentum of M=−PL (18)

6 Generic beam case: Cantilever beam with distributed load

The maximum deflection is given by u= 18 ploadL

4 EI (19)

with a momentum of M=− 12 pL 2 (20)

6 Euler-Bernolli Theory and Natural frequency

Beam equation: pU ̈+(EIuxx)xx=p(x)

Natural frequency: ω=

√ 3 EI

mL 3

7 COMPOSITES AND MIXTURES Course 34322

7 Composites and mixtures

7 Stiffness of anisotropic materials

7 Fiber and lay up mixture

Var dette dokument nyttigt?

Introduction To Wind Energy S21 exam

Kursus: Introduktion til vindenergi (46000)

24 Dokumenter
Studerende delte 24 dokumenter i dette kursus
Var dette dokument nyttigt?
TABLE OF CONTENTS Course 34322
Table of contents
1 Wind Profiles 3
1.1 Velocity profile for mean wind speed and power law . . . . . . . . . . . . . . . . . . 3
1.2 Stable, neutral and unstable conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Wind resources 5
2.1 Wind distribution: Weibull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Annual Energy Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Turbulence........................................... 6
3 Technology of wind turbines 7
3.1 Rotors and efficiency ..................................... 7
3.2 Gearratios........................................... 7
3.3 The planetary gear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Speed and torque relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 Aerodynamics 9
4.1 1D momentum theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Theory on rotating wake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Forces acting on the blade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5 Economy 11
5.1 Table of running expenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6 Structural mechanics 12
6.1 Second moment of inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.1.1 Square box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.1.2 Cross section for a circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.1.3 Approximated circular cross section . . . . . . . . . . . . . . . . . . . . . . . . 12
6.1.4 Sandwich beam blade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.1.5 Parallel axis theorem for second moment of inertia . . . . . . . . . . . . . . . 12
6.2 The effective modulus of elasticity, Ec . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.3 Strain in the upper most part of a beam . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.4 Formula for deflection along the blade and max deflection . . . . . . . . . . . . . . . 13
6.5 Generic beam case: Cantilever beam with point load . . . . . . . . . . . . . . . . . . . 13
1