Skip to document

PEM 2020 Mathematics Advanced Preliminary Exam

PEM Exam Y11
Subject

math advanced

513 Documents
Students shared 513 documents in this course
DegreeGrade

HSC

11
Academic year: 2023/2024
Uploaded by:
0followers
3Uploads
0upvotes

Comments

Please sign in or register to post comments.

Related Studylists

math

Preview text

Student Number

Mathematics Advanced

General Instructions

  • Reading time – 5 minutes Total Marks – 70

  • Working time – 2 hours

  • Write using blue or black pen Section I Questions 1 – 10 10 marks

  • Board–approved calculators may be Allow about 15 minutes for this section

used

  • A reference sheet is provided at Section II Questions 11 – 32 6 0marks

the back of this paper Allow about 1 hour and 45 minutes for

  • All necessary working should be this section

shown in Questions 11 – 32

2020

PRELIMINARY EXAMINATION

Directions to School or College To ensure integrity and security, examination papers must NOT be removed from the examination room. Examination papers may not be returned to students until 24th September, 2020. These examination papers are supplied Copyright Free, as such the purchaser may photocopy and/or make changes for educational purposes within the confines of the School or College. All care has been taken to ensure that this examination paper is error free and that it follows the style, format and material content in accordance with the NESA requirements, recommendations and guidelines. No guarantee or warranty is made or implied that this examination paper mirrors in every respect alternative Preliminary Examination papers written for this course.

Section I

10 marks

Attempt Questions 1- 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

  1. Which graph does not represent a function?
(A) (B)
(C) (D)
  1. What is the greatest value for f ( )x = 5 −2sinx?
(A) − 3
(B) 3
(C) 5
(D) 7
  1. The points A and P are on the unit circle

2 2 x + y = 1. A(1, 0)and O is the origin.

What are the exact coordinates of the point P, if AOP = 120?

(A)
1 1
,
2
 
 − 
 
(B)
1 1
,
2 2
 
 
 
(C)
1 3
,
2 2
 
 − 
 
 
(D)
3 1
,
2 2
 
 − 
 
 
  1. In a raffle, 100 tickets are sold and 3 prizes are given away. A person buys 5 tickets.

What is the probability that this person wins at least one prize?

(A)
1
20
(B)
893
19404
(C)
4657
32340
(D)
893
6468
  1. Which of the following graphs shows the function 2 y = −x x ( − 1) ( x+1)?
(A) (B)
(C) (D)

Section II

60 marks

Attempt Questions 11- 32

Allow about 1 hours and 45 minutes for this section

  • Answer the questions in the spaces provided. Sufficient spaces are provided

for typical responses.

  • Your responses should include relevant mathematical reasoning and/or calculations.

  • Extra writing space is provided at the back of this booklet on pages 26 and 27.

If you use this space, clearly indicate which question you are answering.

Question 11 (1 mark)

Solve 5 − 2 x 17 1

..................................................................
..................................................................
..................................................................
..................................................................
..................................................................

Question 12 (1 mark)

Express as a single fraction in its most simplest form

3 2
2 3

x − x+ −. 1

..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................

Question 13 (3 marks)

Consider f ( )x = 2 x− 1

(a) Sketch f ( )x showing all intercepts and features. 1

............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................

(b) Hence, or otherwise, solve f ( )x = 5. 2

............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................

Question 16 (3 marks)

Differentiate the following:

(a)

3 2

y = 3 x − 10 x + 1 1
............................................................
............................................................
............................................................

(b)

3 y = 5 −x 2

............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................

Question 17 (2 marks)

Find the equation of the tangent to

3

2 1

x

y = e + at the point (0,3). 2
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................

Question 18 (2 marks)

Find the range of values of k for which the expression ( )

2 x − 4 x + 2 +k is 2

always positive.

..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................

Question 19 (4 marks)

The amount of ice-cream (M) in mL that is melting can be modelled by the

function

2 M = 350 − 3 t − 5 t, where tis in minutes. Find:

(a) The amount of ice-cream initially. 1

............................................................
............................................................
............................................................

(b) The time it takes for the ice-cream to completely melt. 2

............................................................
............................................................
............................................................
............................................................
............................................................

(c) The rate at which the ice-cream will be melting after 5 minutes. 1

............................................................
............................................................
............................................................

Question 21 (3 marks)

Bucket 1 contains 6 green balls and 4 blue balls. Bucket 2 contains 5 green balls

and 3 red balls. A ball is drawn at random from Bucket 1 and then placed into Bucket 2.

(a) If a ball is drawn from random from the 9 balls in Bucket 2, 1

what is the probability it is green?

............................................................
............................................................
............................................................
............................................................
............................................................

(b) Given the ball from Bucket 2 is green, what is the probability 2

that the ball transferred from Bucket 1 was blue?

............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................

Question 22 (3 marks)

A helicopter leaves a helipad at point A on a bearing of 128 for 3 to a

checkpoint at C. It then travels on a bearing of 066 for 4 to its base at B.

(a) What is the size of angle ACB? 1

............................................................
............................................................
............................................................

(b) What is the distance from the helipad (A) to the base (B) 2

to one decimal place?

............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................

Question 24 (2 marks)

Find the value of p such that

2 k x ( ) = ( x − 2) +px is an even function. 2

..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................

Question 25 (2 marks)

Solve 2log 5 7 = log 2 7 x−log 3 7. 2

..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................

Question 26 ( 5 marks)

Let

2

( ) for - 1 co

sin

s

x f x x x

=   
.

(a) Prove that

2

1 cos 1 cos

sin x x x

= +
. 2
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................

(b) State any value(s) of x for which f ( )x is undefined in the given domain. 1

............................................................
............................................................

(c) Hence, or otherwise, sketch

2

( ) for - 1 co

sin

s

x f x x x

=   
. 2
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................

(c) Sketch the graph of − f ( −x), showing all important features. 2

............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................
............................................................

Question 28 (2 marks)

The senior group of a high school contains 100 students. Each student studies 2

at least one of the subjects A, B, C. The diagram below shows the number of

students studying each subject. The probability a student studies exactly 2

subjects is 28%. Find x and y.

..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
Was this document helpful?

PEM 2020 Mathematics Advanced Preliminary Exam

Subject: math advanced

513 Documents
Students shared 513 documents in this course
DegreeGrade:

HSC

11
Was this document helpful?
- 1 -
Student Number
Mathematics Advanced
General Instructions
Reading time 5 minutes Total Marks 70
Working time
2
hours
Write using blue or black pen Section I Questions 1 10 10marks
Boardapproved calculators may be Allow about 15 minutes for this section
used
A reference sheet is provided at Section II Questions 11 32 60marks
the back of this paper Allow about 1 hour and 45 minutes for
All necessary working should be this section
shown in Questions 11 32
FULL NAME:__________________________
STUDENT NUMBER:_____________
2020
PRELIMINARY EXAMINATION
Directions to School or College
To ensure integrity and security, examination papers must NOT be removed from the examination room. Examination papers may
not be returned to students until 24th September, 2020. These examination papers are supplied Copyright Free, as such the
purchaser may photocopy and/or make changes for educational purposes within the confines of the School or College.
All care has been taken to ensure that this examination paper is error free and that it follows the style, format and material content
in accordance with the NESA requirements, recommendations and guidelines. No guarantee or warranty is made or implied that this
examination paper mirrors in every respect alternative Preliminary Examination papers written for this course.