- Information
- AI Chat
Was this document helpful?
Assignment 421solutions
Course: Discrete Mathematics (Mathematics 1271)
23 Documents
Students shared 23 documents in this course
University: Lakehead University
Was this document helpful?
Math 1271 Assignment 4
Solutions
1. Give the dual of each of the following Boolean expressions: r'*y, rgtz, rylyz,
and ry + z'.
Solution: The dual of rl * y is rty. The dual of ry' z, is r I A' * z. The dual of
ry I yz is (r * a)fu + z). The dual of ry * zt is (r -l y)zt.
2. Given the Boolean functions ct(r,y): rAt+ r'and 0@,A): r'y* r, evaluate
a(0, 1), B(0, 1), a(1,0), B(1,0), a(0,0), and p(1, 1).
Solution: We have o(0, 1) : 0'0f 1 :7, 0(0,1) : 1'1+0 : 1, o(1,0) : 1'1+0 : 1,
B(1,0) : 0.0* 1 : 1, cv(0,0) :0' 1f 1 : 1, and B(1,1) : 0' I * 1 : 1.
3. Put the Boolean expressions (rz * y)' I ryz, ny' + ny I zt, and yzt * nz into
disjunctive normal form.
Solution: We have:
and
(rz * y)' * rYz : (rz)'Y' + rYz
: (r' * z')y' + ryz
: ,'a' + z'y' + ryz
: r'a' (z + zt)
+ z'
y' (r * r') + nyz
: tr'
,y' * r'z'y' + rz'u' + r'z'y' + ryz
: trtytz + r'a'z' I ry'z' + ryz
ry' + ny * z' : ry'(zl z') + ny(z+ z') + (r+r')(y+a')r'
: ra' z I ny' z' * nyz * ryz' + ryz' + r'yz' + ny' z' + n'y' z'
: r,at
z * ry' z' + raz + rYz' + r'Yz' + r'Y' z'
and
yz' + rz - az'(r +u') + rz(a * y')
: nazt
+ r'uz' * r'yz
* ny'z
4. Determine if y'z' is a prime implicant of r'yz' + n'A'z' t ry'z'.
Solution: Let B: n'yz'+r'y'z'+ry'z'' Wefirst haveto checkwhethety'z'+p: p'
We have y'z' : (r + r')y'z' : trytzt * r'y'zl. Since both ry'z' and n'y'z' occtt in
the disjunctive normal form of B, we have y'z' + 0 : F.The factors of y'z' are
yl and, z'.We have to checkwhether y'+ P: P and whether z'*p: B'We
can do this by considering the functions they define. We have p(0,0, 1) : 0 and
(y'+ 13)(0,0,1) : (1 +0) : 1, so we see A'+ B I p. Similarly, 13(1,1,0) :6 6tt4
Q' + 0): (1 +0) : t, so z' + t3 + P Thts y'z' is a prime implicant of B.
5. Use Karnough maps to find minimal forms for the expressions ryz * ry'z' +
rtyz I r'gz' and ryz' + ry'z' * r'y'z' + r'yz' .