Skip to document

Trig cheat sheet - formulae

formulae
Course

Introduction To Applied Mathematics (SAPM011)

77 Documents
Students shared 77 documents in this course
Academic year: 2023/2024
Uploaded by:
Anonymous Student
This document has been uploaded by a student, just like you, who decided to remain anonymous.
University of Limpopo

Comments

Please sign in or register to post comments.

Preview text

Definition of the Trig Functions

Right triangle definition

For this definition we assume that

0 < θ < π 2

or 0 ◦ < θ < 90 ◦.

sin(θ) = opposite hypotenuse

csc(θ) = hypotenuse opposite cos(θ) = adjacent hypotenuse

sec(θ) = hypotenuse adjacent

tan(θ) =

opposite adjacent cot(θ) =

adjacent opposite

Unit Circle Definition For this definition θ is any angle.

sin(θ) = y 1 =

y csc(θ) = 1 y cos(θ) = x 1 =

x sec(θ) = 1 x tan(θ) = xy cot(θ) = x y

Facts and Properties

Domain The domain is all the values of θ that can be plugged into the function.

sin(θ), θ can be any angle

cos(θ), θ can be any angle

tan(θ), θ 6 =

(

n + 1 2

)

π, n = 0, ± 1 , ± 2 ,...

csc(θ), θ 6 = nπ, n = 0, ± 1 , ± 2 ,...

sec(θ), θ 6 =

(

n + 1 2

)

π, n = 0, ± 1 , ± 2 ,...

cot(θ), θ 6 = nπ, n = 0, ± 1 , ± 2 ,...

Period The period of a function is the number, T , such that f (θ + T ) = f (θ). So, if ω is a fixed number and θ is any angle we have the following periods.

sin (ω θ) → T = 2

π ω cos (ω θ) → T = 2

π ω tan (ω θ) → T = π ω csc (ω θ) → T = 2 ωπ

sec (ω θ) → T = 2

π ω cot (ω θ) → T = π ω Range The range is all possible values to get out of the function.

− 1 ≤ sin(θ) ≤ 1 − 1 ≤ cos(θ) ≤ 1 −∞ < tan(θ) < ∞ −∞ < cot(θ) < ∞ sec(θ) ≥ 1 and sec(θ) ≤ − 1 csc(θ) ≥ 1 and csc(θ) ≤ − 1

Formulas and Identities

Tangent and Cotangent Identities

tan(θ) = sin(θ) cos(θ)

cot(θ) = cos(θ) sin(θ)

Reciprocal Identities

csc(θ) = sin 1 (θ) sin(θ) = csc 1 (θ)

sec(θ) =

1

cos(θ) cos(θ) =

1

sec(θ) cot(θ) =

1

tan(θ) tan(θ) =

1

cot(θ)

Pythagorean Identities

sin 2 (θ) + cos 2 (θ) = 1 tan 2 (θ) + 1 = sec 2 (θ) 1 + cot 2 (θ) = csc 2 (θ)

Even/Odd Formulas sin(−θ) = − sin(θ) csc(−θ) = − csc(θ) cos(−θ) = cos(θ) sec(−θ) = sec(θ) tan(−θ) = − tan(θ) cot(−θ) = − cot(θ)

Periodic Formulas

If n is an integer then,

sin(θ + 2πn) = sin(θ) csc(θ + 2πn) = csc(θ) cos(θ + 2πn) = cos(θ) sec(θ + 2πn) = sec(θ) tan(θ + πn) = tan(θ) cot(θ + πn) = cot(θ)

Degrees to Radians Formulas

If x is an angle in degrees and t is an angle in radians then π 180 =

t x

⇒ t = πx 180

and x = 180t π

Double Angle Formulas

sin(2θ) = 2 sin(θ) cos(θ)

cos(2θ) = cos 2 (θ) − sin 2 (θ)

= 2 cos 2 (θ) − 1 = 1 − 2 sin 2 (θ)

tan(2θ) =

2 tan(θ) 1 − tan 2 (θ)

Half Angle Formulas

sin

(

θ 2

)

= ±

1 − cos(θ) 2

cos

(

θ 2

)

= ±

1 + cos(θ) 2

tan

(

θ 2

)

= ±

1 − cos(θ) 1 + cos(θ)

Half Angle Formulas (alternate form) sin 2 (θ) = 12 (1 − cos(2θ)) cos 2 (θ) = 12 (1 + cos(2θ))

tan 2 (θ) = 1 − cos(2θ) 1 + cos(2θ)

Sum and Difference Formulas sin(α ± β) = sin(α) cos(β) ± cos(α) sin(β) cos(α ± β) = cos(α) cos(β) ∓ sin(α) sin(β)

tan(α ± β) =

tan(α) ± tan(β) 1 ∓ tan(α) tan(β) Product to Sum Formulas sin(α) sin(β) = 12 [cos(α − β) − cos(α + β)] cos(α) cos(β) = 12 [cos(α − β) + cos(α + β)] sin(α) cos(β) = 12 [sin(α + β) + sin(α − β)] cos(α) sin(β) = 12 [sin(α + β) − sin(α − β)]

Sum to Product Formulas sin(α) + sin(β) = 2 sin

(

α + β 2

)

cos

(

α − β 2

)

sin(α) − sin(β) = 2 cos

(

α + β 2

)

sin

(

α − β 2

)

cos(α) + cos(β) = 2 cos

(

α + β 2

)

cos

(

α − β 2

)

cos(α)−cos(β) = − 2 sin

(

α + β 2

)

sin

(

α − β 2

)

Cofunction Formulas sin

( π 2 − θ

)

= cos(θ) cos

( π 2 − θ

)

= sin(θ)

csc

( π 2

− θ

)

= sec(θ) sec

( π 2

− θ

)

= csc(θ)

tan

( π 2

− θ

)

= cot(θ) cot

( π 2

− θ

)

= tan(θ)

Inverse Trig Functions

Definition

y = sin− 1 (x) is equivalent to x = sin(y)

y = cos− 1 (x) is equivalent to x = cos(y)

y = tan− 1 (x) is equivalent to x = tan(y)

Domain and Range

Function Domain Range y = sin− 1 (x) − 1 ≤ x ≤ 1 − π 2

≤ y ≤ π 2 y = cos− 1 (x) − 1 ≤ x ≤ 1 0 ≤ y ≤ π y = tan− 1 (x) −∞ < x < ∞ −

π 2 < y < π 2

Inverse Properties cos

(

cos− 1 (x)

)

= x cos− 1 (cos(θ)) = θ sin

(

sin− 1 (x)

)

= x sin− 1 (sin(θ)) = θ tan

(

tan− 1 (x)

)

= x tan− 1 (tan(θ)) = θ

Alternate Notation sin− 1 (x) = arcsin(x) cos− 1 (x) = arccos(x) tan− 1 (x) = arctan(x)

Law of Sines, Cosines and Tangents

Law of Sines sin(α) a

= sin(β) b

= sin(γ) c

Law of Cosines

a 2 = b 2 + c 2 − 2 bc cos(α)

b 2 = a 2 + c 2 − 2 ac cos(β)

c 2 = a 2 + b 2 − 2 ab cos(γ)

Mollweide’s Formula a + b c =

cos

( 1

2 (α − β)

)

sin

( 1

2 γ

)

Law of Tangents a − b a + b

=

tan

( 1

2 (α − β)

)

tan

( 1

2 (α + β)

)

b − c b + c =

tan

( 1

2 (β − γ)

)

tan

( 1

2 (β + γ)

)

a − c a + c

=

tan

( 1

2 (α − γ)

)

tan

( 1

2 (α + γ)

)

Was this document helpful?

Trig cheat sheet - formulae

Course: Introduction To Applied Mathematics (SAPM011)

77 Documents
Students shared 77 documents in this course
Was this document helpful?
Trig Cheat Sheet
Definition of the Trig Functions
Right triangle definition
For this definition we assume that
0< θ < π
2or 0< θ < 90.
sin(θ) = opposite
hypotenuse csc(θ) = hypotenuse
opposite
cos(θ) = adjacent
hypotenuse sec(θ) = hypotenuse
adjacent
tan(θ) = opposite
adjacent cot(θ) = adjacent
opposite
Unit Circle Definition
For this definition θis any angle.
sin(θ) = y
1=ycsc(θ) = 1
y
cos(θ) = x
1=xsec(θ) = 1
x
tan(θ) = y
xcot(θ) = x
y
Facts and Properties
Domain
The domain is all the values of θthat can be
plugged into the function.
sin(θ),θcan be any angle
cos(θ),θcan be any angle
tan(θ),θ6=n+1
2π, n = 0,±1,±2, . . .
csc(θ),θ6=, n = 0,±1,±2, . . .
sec(θ),θ6=n+1
2π, n = 0,±1,±2, . . .
cot(θ),θ6=, n = 0,±1,±2, . . .
Period
The period of a function is the number, T, such
that f(θ+T) = f(θ). So, if ωis a fixed number
and θis any angle we have the following
periods.
sin (ω θ)T=2π
ω
cos (ω θ)T=2π
ω
tan (ω θ)T=π
ω
csc (ω θ)T=2π
ω
sec (ω θ)T=2π
ω
cot (ω θ)T=π
ω
Range
The range is all possible values to get out of the function.
1sin(θ)11cos(θ)1
−∞ <tan(θ)< −∞ <cot(θ)<
sec(θ)1and sec(θ) 1csc(θ)1and csc(θ) 1
© Paul Dawkins - https://tutorial.math.lamar.edu