Skip to document

Database Management Systems

Best wishes for all
Course

Computer Applications (IRDA37)

83 Documents
Students shared 83 documents in this course
Academic year: 2023/2024
Uploaded by:
Anonymous Student
This document has been uploaded by a student, just like you, who decided to remain anonymous.
Annamalai University

Comments

Please sign in or register to post comments.

Preview text

s

DATABASE

MANAGEMENT SYSTEM

(DBMS)

(R-13 Autonomous)

Department of Computer Science & Engineering

Malla Reddy College of Engineering & Technology

(Accredited by NBA with NAAC-A Grade, UGC-Autonomous, ISO Certified Institution) Maisammaguda, Near Kompally, Medchal Road, Sec’bad-500 100.

SYLLABUS

(R15A0509) DATABASE MANAGEMENT SYSTEMS Objectives: To Understand the basic concepts and the applications of database systems To Master the basics of SQL and construct queries using SQL To understand the relational database design principles To become familiar with the basic issues of transaction processing and concurrency control To become familiar with database storage structures and access techniques

UNIT I: Data base System Applications, Purpose of Database Systems, View of Data – Data Abstraction – Instances and Schemas – data Models – the ER Model – Relational Model – Other Models – Database Languages – DDL – DML – database Access for applications Programs – data base Users and Administrator – Transaction Management – data base Architecture – Storage Manager – the Query Processor Data base design and ER diagrams – ER Model - Entities, Attributes and Entity sets – Relationships and Relationship sets – ER Design Issues – Concept Design – Conceptual Design for University Enterprise. Introduction to the Relational Model – Structure – Database Schema, Keys – Schema Diagrams

UNIT II: Relational Query Languages, Relational Operations. Relational Algebra – Selection and projection set operations – renaming – Joins – Division – Examples of Algebra overviews – Relational calculus – Tuple relational Calculus – Domain relational calculus. Overview of the SQL Query Language – Basic Structure of SQL Queries, Set Operations, Aggregate Functions – GROUPBY – HAVING, Nested Sub queries, Views, Triggers.

UNIT III: Normalization – Introduction, Non loss decomposition and functional dependencies, First, Second, and third normal forms – dependency preservation, Boyee/Codd normal form. Higher Normal Forms - Introduction, Multi-valued dependencies and Fourth normal form, Join dependencies and Fifth normal form

UNIT IV: Transaction Concept- Transaction State- Implementation of Atomicity and Durability – Concurrent – Executions – Serializability- Recoverability – Implementation of Isolation – Testing for serializability- Lock – Based Protocols – Timestamp Based Protocols- Validation- Based Protocols – Multiple Granularity. Recovery and Atomicity – Log – Based Recovery – Recovery with Concurrent Transactions – Buffer Management – Failure with loss of nonvolatile storage-Advance Recovery systems- Remote Backup systems.

UNIT V: File organization:– File organization – various kinds of indexes. Query Processing – Measures of query cost - Selection operation – Projection operation, - Join operation – set operation and aggregate operation – Relational Query Optimization – Transacting SQL queries – Estimating the cost – Equivalence Rules.

UNIT-
Introduction to Database Management System

As the name suggests, the database management system consists of two parts. They are: 1. Database and 2. Management System

What is a Database? To find out what database is, we have to start from data, which is the basic building block of any DBMS.

Data: Facts, figures, statistics etc. having no particular meaning (e. 1, ABC, 19 etc). Record: Collection of related data items, e. in the above example the three data items had no meaning. But if we organize them in the following way, then they collectively represent meaningful information. Roll Name Age 1 ABC 19

Table or Relation: Collection of related records.

Roll Name Age 1 ABC 19 2 DEF 22 3 XYZ 28

The columns of this relation are called Fields, Attributes or Domains. The rows are called Tuples or Records. Database: Collection of related relations. Consider the following collection of tables: T1 T Roll Name Age 1 ABC 19 2 DEF 22 3 XYZ 28

T3 T

We now have a collection of 4 tables. They can be called a “related collection” because we can clearly find out that there are some common attributes existing in a selected pair of tables. Because of these common attributes we may combine the data of two or more tables together to find out the complete details of a student. Questions like “Which hostel does the youngest student live in?” can be answered now, although

Roll Address 1 KOL 2 DEL 3 MUM

Roll Year 1 I 2 II 3 I

Year Hostel I H II H

Age and Hostel attributes are in different tables.

A database in a DBMS could be viewed by lots of different people with different responsibilities.

Figure 1: Empolyees are accessing Data through DBMS

For example, within a company there are different departments, as well as customers, who each need to see different kinds of data. Each employee in the company will have different levels of access to the database with their own customized front-end application.

In a database, data is organized strictly in row and column format. The rows are called Tuple or Record. The data items within one row may belong to different data types. On the other hand, the columns are often called Domain or Attribute. All the data items within a single attribute are of the same data type.

What is Management System?

A database-management system (DBMS) is a collection of interrelated data and a set of programs to access those data. This is a collection of related data with an implicit meaning and hence is a database. The collection of data, usually referred to as the database, contains information relevant to an enterprise. The primary goal of a DBMS is to provide a way to store and retrieve database information that is both convenient and efficient. By data, we mean known facts that can be recorded and that have implicit meaning.

The management system is important because without the existence of some kind of rules and regulations it is not possible to maintain the database. We have to select the particular attributes which should be included in a particular table; the common attributes to create relationship between two tables; if a new record has to be inserted or deleted then which tables should have to be handled etc. These issues must be resolved by having some kind of rules to follow in order to maintain the integrity of the database.

Database systems are designed to manage large bodies of information. Management of data involves both defining structures for storage of information and providing mechanisms for the manipulation of information. In addition, the database system must ensure the safety of the information stored, despite system crashes or attempts at unauthorized access. If data are to be shared among several users, the system must avoid possible anomalous results.

Because information is so important in most organizations, computer scientists have developed a large body of concepts and techniques for managing data. These concepts and technique form the focus of this book. This

System programmers wrote these application programs to meet the needs of the university. New application programs are added to the system as the need arises. For example, suppose that a university decides to create a new major (say, computer science).As a result, the university creates a new department and creates new permanent files (or adds information to existing files) to record information about all the instructors in the department, students in that major, course offerings, degree requirements, etc. The university may have to write new application programs to deal with rules specific to the new major. New application programs may also have to be written to handle new rules in the university. Thus, as time goes by, the system acquires more files and more application programs.

This typical file-processing system is supported by a conventional operating system. The system stores permanent records in various files, and it needs different application programs to extract records from, and add records to, the appropriate files. Before database management systems (DBMSs) were introduced, organizations usually stored information in such systems. Keeping organizational information in a file- processing system has a number of major disadvantages:

Data redundancy and inconsistency. Since different programmers create the files and application programs over a long period, the various files are likely to have different structures and the programs may be written in several programming languages. Moreover, the same information may be duplicated in several places (files). For example, if a student has a double major (say, music and mathematics) the address and telephone number of that student may appear in a file that consists of student records of students in the Music department and in a file that consists of student records of students in the Mathematics department. This redundancy leads to higher storage and access cost. In addition, it may lead to data inconsistency; that is, the various copies of the same data may no longer agree. For example, a changed student address may be reflected in the Music department records but not elsewhere in the system.

Difficulty in accessing data. Suppose that one of the university clerks needs to find out the names of all students who live within a particular postal-code area. The clerk asks the data-processing department to generate such a list. Because the designers of the original system did not anticipate this request, there is no application program on hand to meet it. There is, however, an application program to generate the list of all students.

The university clerk has now two choices: either obtain the list of all students and extract the needed information manually or ask a programmer to write the necessary application program. Both alternatives are obviously unsatisfactory. Suppose that such a program is written, and that, several days later, the same clerk needs to trim that list to include only those students who have taken at least 60 credit hours. As expected, a program to generate such a list does not exist. Again, the clerk has the preceding two options, neither of which is satisfactory. The point here is that conventional file-processing environments do not allow needed data to be retrieved in a convenient and efficient manner. More responsive data-retrieval systems are required for general use.

Data isolation. Because data are scattered in various files, and files may be in different formats, writing new application programs to retrieve the appropriate data is difficult.

Integrity problems. The data values stored in the database must satisfy certain types of consistency constraints. Suppose the university maintains an account for each department, and records the balance amount in each account. Suppose also that the university requires that the account balance of a department may never fall below zero. Developers enforce these constraints in the system by adding appropriate code in the various application programs. However, when new constraints are added, it is difficult to change the programs to enforce them. The problem is compounded when constraints involve several data items from different files.

Atomicity problems. A computer system, like any other device, is subject to failure. In many applications, it is crucial that, if a failure occurs, the data be restored to the consistent state that existed prior to the failure.

Consider a program to transfer $500 from the account balance of department A to the account balance of department B. If a system failure occurs during the execution of the program, it is possible that the $500 was removed from the balance of department A but was not credited to the balance of department B, resulting in an inconsistent database state. Clearly, it is essential to database consistency that either both the credit and debit occur, or that neither occur.

That is, the funds transfer must be atomic—it must happen in its entirety or not at all. It is difficult to ensure atomicity in a conventional file-processing system.

Concurrent-access anomalies. For the sake of overall performance of the system and faster response, many systems allow multiple users to update the data simultaneously. Indeed, today, the largest Internet retailers may have millions of accesses per day to their data by shoppers. In such an environment, interaction of concurrent updates is possible and may result in inconsistent data. Consider department A, with an account balance of $10,000. If two department clerks debit the account balance (by say $500 and $100, respectively) of department A at almost exactly the same time, the result of the concurrent executions may leave the budget in an incorrect (or inconsistent) state. Suppose that the programs executing on behalf of each withdrawal read the old balance, reduce that value by the amount being withdrawn, and write the result back. If the two programs run concurrently, they may both read the value $10,000, and write back $9500 and $9900, respectively. Depending on which one writes the value last, the account balance of department A may contain either $ or $9900, rather than the correct value of $9400. To guard against this possibility, the system must maintain some form of supervision. But supervision is difficult to provide because data may be accessed by many different application programs that have not been coordinated previously.

As another example, suppose a registration program maintains a count of students registered for a course, in order to enforce limits on the number of students registered. When a student registers, the program reads the current count for the courses, verifies that the count is not already at the limit, adds one to the count, and stores the count back in the database. Suppose two students register concurrently, with the count at (say) 39. The two program executions may both read the value 39, and both would then write back 40, leading to an incorrect increase of only 1, even though two students successfully registered for the course and the count should be 41. Furthermore, suppose the course registration limit was 40; in the above case both students would be able to register, leading to a violation of the limit of 40 students.

Security problems. Not every user of the database system should be able to access all the data. For example, in a university, payroll personnel need to see only that part of the database that has financial information. They do not need access to information about academic records. But, since application programs are added to the file-processing system in an ad hoc manner, enforcing such security constraints is difficult.

These difficulties, among others, prompted the development of database systems. In what follows, we shall see the concepts and algorithms that enable database systems to solve the problems with file-processing systems.

Advantages of DBMS:

Controlling of Redundancy: Data redundancy refers to the duplication of data (i storing same data multiple times). In a database system, by having a centralized database and centralized control of data by the DBA the unnecessary duplication of data is avoided. It also eliminates the extra time for processing the large volume of data. It results in saving the storage space.

Data Abstraction For the system to be usable, it must retrieve data efficiently. The need for efficiency has led designers to use complex data structures to represent data in the database. Since many database-system users are not computer trained, developers hide the complexity from users through several levels of abstraction, to simplify users’ interactions with the system:

Figure 1 : Levels of Abstraction in a DBMS

  • Physical level (or Internal View / Schema): The lowest level of abstraction describes how the data are actually stored. The physical level describes complex low-level data structures in detail.

  • Logical level (or Conceptual View / Schema): The next-higher level of abstraction describes what data are stored in the database, and what relationships exist among those data. The logical level thus describes the entire database in terms of a small number of relatively simple structures. Although implementation of the simple structures at the logical level may involve complex physical-level structures, the user of the logical level does not need to be aware of this complexity. This is referred to as physical data independence. Database administrators, who must decide what information to keep in the database, use the logical level of abstraction.

  • View level (or External View / Schema): The highest level of abstraction describes only part of the entire database. Even though the logical level uses simpler structures, complexity remains because of the variety of information stored in a large database. Many users of the database system do not need all this information; instead, they need to access only a part of the database. The view level of abstraction exists to simplify their interaction with the system. The system may provide many views for the same database. Figure 1 shows the relationship among the three levels of abstraction. An analogy to the concept of data types in programming languages may clarify the distinction among levels of abstraction. Many high-level programming languages support the notion of a structured type. For example, we may describe a record as follows: type instructor = record ID : char (5); name : char (20); dept name : char (20); salary : numeric (8,2); end;

This code defines a new record type called instructor with four fields. Each field has a name and a type associated with it. A university organization may have several such record types, including

Database DISK

  • department, with fields dept_name, building, and budget
  • course, with fields course_id, title, dept_name, and credits
  • student, with fields ID, name, dept_name, and tot_cred

At the physical level, an instructor, department, or student record can be described as a block of consecutive storage locations. The compiler hides this level of detail from programmers. Similarly, the database system hides many of the lowest-level storage details from database programmers. Database administrators, on the other hand, may be aware of certain details of the physical organization of the data.

At the logical level, each such record is described by a type definition, as in the previous code segment, and the interrelationship of these record types is defined as well. Programmers using a programming language work at this level of abstraction. Similarly, database administrators usually work at this level of abstraction.

Finally, at the view level, computer users see a set of application programs that hide details of the data types. At the view level, several views of the database are defined, and a database user sees some or all of these views. In addition to hiding details of the logical level of the database, the views also provide a security mechanism to prevent users from accessing certain parts of the database. For example, clerks in the university registrar office can see only that part of the database that has information about students; they cannot access information about salaries of instructors.

####### Instances and Schemas

Databases change over time as information is inserted and deleted. The collection of information stored in the database at a particular moment is called an instance of the database. The overall design of the database is called the database schema. Schemas are changed infrequently, if at all. The concept of database schemas and instances can be understood by analogy to a program written in a programming language. A database schema corresponds to the variable declarations (along with associated type definitions) in a program.

Each variable has a particular value at a given instant. The values of the variables in a program at a point in time correspond to an instance of a database schema. Database systems have several schemas, partitioned according to the levels of abstraction. The physical schema describes the database design at the physical level, while the logical schema describes the database design at the logical level. A database may also have several schemas at the view level, sometimes called subschemas, which describe different views of the database. Of these, the logical schema is by far the most important, in terms of its effect on application programs, since programmers construct applications by using the logical schema. The physical schema is hidden beneath the logical schema, and can usually be changed easily without affecting application programs. Application programs are said to exhibit physical data independence if they do not depend on the physical schema, and thus need not be rewritten if the physical schema changes.

Data Models

Underlying the structure of a database is the data model: a collection of conceptual tools for describing data, data relationships, data semantics, and consistency constraints. A data model provides a way to describe the design of a database at the physical, logical, and view levels.

The data models can be classified into four different categories:

data. A query is a statement requesting the retrieval of information. The portion of a DML that involves information retrieval is called a query language. Although technically incorrect, it is common practice to use the terms query language and data-manipulation language synonymously.

Data-Definition Language (DDL) We specify a database schema by a set of definitions expressed by a special language called a data-definition language (DDL). The DDL is also used to specify additional properties of the data.

We specify the storage structure and access methods used by the database system by a set of statements in a special type of DDL called a data storage and definition language. These statements define the implementation details of the database schemas, which are usually hidden from the users. The data values stored in the database must satisfy certain consistency constraints. For example, suppose the university requires that the account balance of a department must never be negative. The DDL provides facilities to specify such constraints. The database system checks these constraints every time the database is updated. In general, a constraint can be an arbitrary predicate pertaining to the database. However, arbitrary predicates may be costly to test. Thus, database systems implement integrity constraints that can be tested with minimal overhead.

  • Domain Constraints. A domain of possible values must be associated with every attribute (for example, integer types, character types, date/time types). Declaring an attribute to be of a particular domain acts as a constraint on the values that it can take. Domain constraints are the most elementary form of integrity constraint. They are tested easily by the system whenever a new data item is entered into the database.

  • Referential Integrity. There are cases where we wish to ensure that a value that appears in one relation for a given set of attributes also appears in a certain set of attributes in another relation (referential integrity). For example, the department listed for each course must be one that actually exists. More precisely, the dept name value in a course record must appear in the dept name attribute of some record of the department relation. Database modifications can cause violations of referential integrity. When a referential-integrity constraint is violated, the normal procedure is to reject the action that caused the violation.

  • Assertions. An assertion is any condition that the database must always satisfy. Domain constraints and referential-integrity constraints are special forms of assertions. However, there are many constraints that we cannot express by using only these special forms. For example, “Every department must have at least five courses offered every semester” must be expressed as an assertion. When an assertion is created, the system tests it for validity. If the assertion is valid, then any future modification to the database is allowed only if it does not cause that assertion to be violated.

  • Authorization. We may want to differentiate among the users as far as the type of access they are permitted on various data values in the database. These differentiations are expressed in terms of authorization, the most common being: read authorization, which allows reading, but not modification, of data; insert authorization, which allows insertion of new data, but not modification of existing data; update authorization, which allows modification, but not deletion, of data; and delete authorization, which allows deletion of data. We may assign the user all, none, or a combination of these types of authorization.

The DDL, just like any other programming language, gets as input some instructions (statements) and generates some output. The output of the DDL is placed in the data dictionary,which contains metadata—that is, data about data. The data dictionary is considered to be a special type of table that can only be accessed and updated by the database system itself (not a regular user). The database system consults the data dictionary before reading or modifying actual data.

Data Dictionary

We can define a data dictionary as a DBMS component that stores the definition of data characteristics and relationships. You may recall that such “data about data” were labeled metadata. The DBMS data dictionary provides the DBMS with its self describing characteristic. In effect, the data dictionary resembles and X-ray of the company’s entire data set, and is a crucial element in the data administration function. The two main types of data dictionary exist, integrated and stand alone. An integrated data dictionary is included with the DBMS. For example, all relational DBMSs include a built in data dictionary or system catalog that is frequently accessed and updated by the RDBMS. Other DBMSs especially older types, do not have a built in data dictionary instead the DBA may use third party stand alone data dictionary systems. Data dictionaries can also be classified as active or passive. An active data dictionary is automatically updated by the DBMS with every database access, thereby keeping its access information up-to-date. A passive data dictionary is not updated automatically and usually requires a batch process to be run. Data dictionary access information is normally used by the DBMS for query optimization purpose. The data dictionary’s main function is to store the description of all objects that interact with the database. Integrated data dictionaries tend to limit their metadata to the data managed by the DBMS. Stand alone data dictionary systems are more usually more flexible and allow the DBA to describe and manage all the organization’s data, whether or not they are computerized. Whatever the data dictionary’s format, its existence provides database designers and end users with a much improved ability to communicate. In addition, the data dictionary is the tool that helps the DBA to resolve data conflicts. Although, there is no standard format for the information stored in the data dictionary several features are common. For example, the data dictionary typically stores descriptions of all: - Data elements that are define in all tables of all databases. Specifically the data dictionary stores the name, datatypes, display formats, internal storage formats, and validation rules. The data dictionary tells where an element is used, by whom it is used and so on. - Tables define in all databases. For example, the data dictionary is likely to store the name of the table creator, the date of creation access authorizations, the number of columns, and so on. - Indexes define for each database tables. For each index the DBMS stores at least the index name the attributes used, the location, specific index characteristics and the creation date. - Define databases: who created each database, the date of creation where the database is located, who the DBA is and so on. - End users and The Administrators of the data base - Programs that access the database including screen formats, report formats application formats, SQL queries and so on. - Access authorization for all users of all databases. - Relationships among data elements which elements are involved: whether the relationship are mandatory or optional, the connectivity and cardinality and so on.

####### Database Administrators and Database Users

A primary goal of a database system is to retrieve information from and store new information in the database. People who work with a database can be categorized as database users or database administrators.

Database Users and User Interfaces

There are four different types of database-system users, differentiated by the way they expect to interact with the system. Different types of user interfaces have been designed for the different types of users. Naive users are unsophisticated users who interact with the system by invoking one of the application programs that have been written previously. For example, a bank teller who needs to transfer $50 from account A to account B invokes a program called transfer. This program asks the teller for the amount of money to be transferred, the account from which the money is to be transferred, and the account to which the money is to be transferred.

Database Architecture:

We are now in a position to provide a single picture (Figure 1) of the various components of a database system and the connections among them.

The architecture of a database system is greatly influenced by the underlying computer system on which the database system runs. Database systems can be centralized, or client-server, where one server machine executes work on behalf of multiple client machines. Database systems can also be designed to exploit parallel computer architectures. Distributed databases span multiple geographically separated machines.

Figure 1: Database System Architecture

A database system is partitioned into modules that deal with each of the responsibilities of the overall system. The functional components of a database system can be broadly divided into the storage manager and the query processor components. The storage manager is important because databases typically require a large amount of storage space. The query processor is important because it helps the database system simplify and facilitate access to data.

It is the job of the database system to translate updates and queries written in a nonprocedural language, at the logical level, into an efficient sequence of operations at the physical level.

Database applications are usually partitioned into two or three parts, as in Figure 1. In a two-tier architecture, the application resides at the client machine, where it invokes database system functionality at the server machine through query language statements. Application program interface standards like ODBC and JDBC are used for interaction between the client and the server. In contrast, in a three-tier architecture, the client machine acts as merely a front end and does not contain any direct database calls. Instead, the client end communicates with an application server, usually through a forms interface.

The application server in turn communicates with a database system to access data. The business logic of the application, which says what actions to carry out under what conditions, is embedded in the application server, instead of being distributed across multiple clients. Three-tier applications are more appropriate for large applications, and for applications that run on the WorldWideWeb.

Figure 1: Two-tier and three-tier architectures.

Query Processor:

The query processor components include · DDL interpreter, which interprets DDL statements and records the definitions in the data dictionary. · DML compiler, which translates DML statements in a query language into an evaluation plan consisting of low-level instructions that the query evaluation engine understands. A query can usually be translated into any of a number of alternative evaluation plans that all give the same result. The DML compiler also performs query optimization, that is, it picks the lowest cost evaluation plan from among the alternatives. Query evaluation engine, which executes low-level instructions generated by the DML compiler.

Storage Manager:

A storage manager is a program module that provides the interface between the lowlevel data stored in the database and the application programs and queries submitted to the system. The storage manager is responsible for the interaction with the file manager. The raw data are stored on the disk using the file system, which is usually provided by a conventional operating system. The storage manager translates the various DML statements into low-level file-system commands. Thus, the storage manager is responsible for storing, retrieving, and updating data in the database. The storage manager components include:

entity.

Example for a weak entity : In a parent/child relationship, a parent is considered as a strong entity and the child is a weak entity.

In ER modeling, notation for weak entity is given below.

Attributes

Properties/characteristics which describe entities are called attributes.

In ER modeling, notation for attribute is given below.

Domain of Attributes

The set of possible values that an attribute can take is called the domain of the attribute. For example, the attribute day may take any value from the set {Monday, Tuesday ... Friday}. Hence this set can be termed as the domain of the attribute day.

Key attribute

The attribute (or combination of attributes) which is unique for every entity instance is called key attribute.

E the employee_id of an employee, pan_card_number of a person etc the key attribute consists of two or more attributes in combination, it is called a composite key.

In ER modeling, notation for key attribute is given below.

Simple attribute

If an attribute cannot be divided into simpler components, it is a simple attribute.

Example for simple attribute : employee_id of an employee.

Composite attribute

If an attribute can be split into components, it is called a composite attribute.

Example for composite attribute : Name of the employee which can be split into First_name, Middle_name, and Last_name.

Single valued Attributes

If an attribute can take only a single value for each entity instance, it is a single valued attribute.

example for single valued attribute : age of a student. It can take only one value for a particular student.

Multi-valued Attributes

If an attribute can take more than one value for each entity instance, it is a multi-valued attribute. Multi-valued

example for multi valued attribute : telephone number of an employee, a particular employee may have multiple telephone numbers.

In ER modeling, notation for multi-valued attribute is given below.

Stored Attribute

An attribute which need to be stored permanently is a stored attribute

Example for stored attribute : name of a student

Derived Attribute

An attribute which can be calculated or derived based on other attributes is a derived attribute.

Example for derived attribute : age of employee which can be calculated from date of birth and current date.

In ER modeling, notation for derived attribute is given below.

Relationships

Associations between entities are called relationships

Example : An employee works for an organization. Here "works for" is a relation between the entities employee and organization.

In ER modeling, notation for relationship is given below.

However in ER Modeling, To connect a weak Entity with others, you should use a weak relationship notation as given below

Was this document helpful?

Database Management Systems

Course: Computer Applications (IRDA37)

83 Documents
Students shared 83 documents in this course
Was this document helpful?
1
s
DATABASE
MANAGEMENT SYSTEM
(DBMS)
(R-13 Autonomous)
Department of Computer Science & Engineering
Malla Reddy College of Engineering & Technology
(Accredited by NBA with NAAC-A Grade, UGC-Autonomous, ISO Certified Institution)
Maisammaguda, Near Kompally, Medchal Road, Sec’bad-500 100.