- Information
- AI Chat
Was this document helpful?
Formula MLC by Coaching Actuaties
Course: Actuarial Science (CS242)
54 Documents
Students shared 54 documents in this course
University: Universiti Teknologi MARA
Was this document helpful?
www.coachingactuaries.com Copyright © 2016 Coaching Actuaries. All Rights Reserved. 1
Raise Your Odds® with Adapt
Exam MLC
SURVIVALDISTRIBUTIONS
ProbabilityFunctions
ActuarialNotations
𝑝𝑝
# $ =Probabilitythat 𝑥𝑥survives𝑡𝑡years
=Pr 𝑇𝑇
$> 𝑡𝑡
= 𝐴𝐴$𝑡𝑡
𝑞𝑞
# $ =Probabilitythat 𝑥𝑥dieswithin𝑡𝑡years
=Pr 𝑇𝑇
$≤ 𝑡𝑡
= 𝐹𝐹
$𝑡𝑡
𝑝𝑝
# $ + 𝑞𝑞
# $ = 1
𝑞𝑞
#|3 $=Probabilitythat 𝑥𝑥survives𝑡𝑡years
anddieswithinthefollowing𝑢𝑢years
=#𝑝𝑝$⋅3𝑞𝑞$D#
=#𝑝𝑝$−#D3𝑝𝑝$
=#D3 𝑞𝑞$−#𝑞𝑞$
LifeTableFunctions
𝑑𝑑
G $ = 𝑙𝑙$− 𝑙𝑙$DG
𝑝𝑝
# $ =𝑙𝑙$D#
𝑙𝑙$
𝑞𝑞
# $ =𝑑𝑑
# $
𝑙𝑙$
= 𝑙𝑙$− 𝑙𝑙$D#
𝑙𝑙$
𝑞𝑞
#|3 $=𝑑𝑑
3 $D#
𝑙𝑙$
= 𝑙𝑙$D# − 𝑙𝑙$D#D3
𝑙𝑙$
ForceofMortality
𝜇𝜇$D# =𝑓𝑓
$𝑡𝑡
𝐴𝐴$𝑡𝑡
𝜇𝜇$D# = − 𝑑𝑑
d𝑡𝑡ln 𝐴𝐴$𝑡𝑡
𝜇𝜇$D# = − 𝑑𝑑
d𝑡𝑡ln 𝑝𝑝
# $
𝑓𝑓
$𝑡𝑡 = 𝑝𝑝
# $ ⋅ 𝜇𝜇$D#
𝑝𝑝
# $ =exp− 𝜇𝜇$DMd𝑠𝑠
#
O
𝑞𝑞
# $ =𝑝𝑝
M
.$⋅ 𝜇𝜇$DMd𝑠𝑠
#
O
𝑞𝑞
#|3 $=𝑝𝑝
M
.$⋅ 𝜇𝜇$DMd𝑠𝑠
#D3
#
MortalityLaws
ConstantForceofMortality
𝜇𝜇$= 𝜇𝜇
𝑝𝑝
# $ = 𝑒𝑒RS#
UniformDistribution
𝜇𝜇$=1
𝜔𝜔 − 𝑥𝑥 , 0 ≤ 𝑥𝑥 < 𝜔𝜔
𝑝𝑝
# $ =𝜔𝜔 − 𝑥𝑥 − 𝑡𝑡
𝜔𝜔 − 𝑥𝑥 , 0 ≤ 𝑡𝑡 ≤ 𝜔𝜔 − 𝑥𝑥
𝑞𝑞
#|3 $=𝑢𝑢
𝜔𝜔 − 𝑥𝑥 , 0 ≤ 𝑡𝑡 + 𝑢𝑢 ≤ 𝜔𝜔 − 𝑥𝑥
BetaDistribution
𝜇𝜇$=𝛼𝛼
𝜔𝜔 − 𝑥𝑥 , 0 ≤ 𝑥𝑥 < 𝜔𝜔
𝑝𝑝
# $ =𝜔𝜔 − 𝑥𝑥 − 𝑡𝑡
𝜔𝜔 − 𝑥𝑥
Y
, 0 ≤ 𝑡𝑡 ≤ 𝜔𝜔 − 𝑥𝑥
Gompertz’sLaw
𝜇𝜇$= 𝐵𝐵𝑐𝑐$, 𝑐𝑐 > 1
𝑝𝑝
# $ =exp−𝐵𝐵𝑐𝑐$𝑐𝑐#− 1
ln 𝑐𝑐
Makeham’sLaw
𝜇𝜇$= 𝐴𝐴 + 𝐵𝐵𝑐𝑐$, 𝑐𝑐 > 1
𝑝𝑝
# $ =exp −𝐴𝐴𝑡𝑡 −𝐵𝐵𝑐𝑐$𝑐𝑐#− 1
ln 𝑐𝑐
Moments
CompleteFutureLifetime
General
𝑒𝑒
∘
$= 𝑝𝑝
# $
]
O
d𝑡𝑡
ConstantForceofMortality
𝑒𝑒
∘
$=1
𝜇𝜇
UniformDistribution
𝑒𝑒
∘
$=𝜔𝜔 − 𝑥𝑥
2
BetaDistribution
𝑒𝑒
∘
$=𝜔𝜔 − 𝑥𝑥
𝛼𝛼 + 1
n-yearTemporaryCompleteFutureLifetime
𝑒𝑒
∘
$:G| = 𝑝𝑝
# $
G
O
d𝑡𝑡
•UniformDistribution
𝑒𝑒
∘
$:G| = 𝑝𝑝
G $ 𝑛𝑛 + 𝑞𝑞
G $
𝑛𝑛
2
CurtateFutureLifetime
𝑒𝑒$= 𝑘𝑘 ⋅
]
bcd
𝑞𝑞
b| $=𝑝𝑝
b$
]
bcd
•UniformDistribution
𝑒𝑒$= 𝑒𝑒
∘
$− 0.5
n-yearTemporaryCurtateFutureLifetime
𝑒𝑒$:G| = 𝑘𝑘 ⋅
GRd
bcd
𝑞𝑞
b| $+ 𝑛𝑛 ⋅ 𝑝𝑝
G $ =𝑝𝑝
b$
G
bcd
•UniformDistribution
𝑒𝑒$:G| = 𝑒𝑒
∘
$:G| − 0.5 𝑞𝑞
G
.$
RecursiveFormulas
𝑒𝑒
∘
$= 𝑒𝑒
∘
$:G| + 𝑝𝑝
G $ ⋅ 𝑒𝑒
∘
$DG
𝑒𝑒
∘
$:G| = 𝑒𝑒
∘
$:f| + 𝑝𝑝
f $ ⋅ 𝑒𝑒
∘
$Df:GRf|, 𝑚𝑚 < 𝑛𝑛
𝑒𝑒$= 𝑒𝑒$:G| + 𝑝𝑝
G $ ⋅ 𝑒𝑒$DG = 𝑒𝑒$:GRd| + 𝑝𝑝
G $ 1 + 𝑒𝑒$DG
𝑒𝑒$= 𝑝𝑝$1 + 𝑒𝑒$Dd
𝑒𝑒$:G| = 𝑒𝑒$:f| + 𝑝𝑝
f $ ⋅ 𝑒𝑒$Df:GRf|, 𝑚𝑚 < 𝑛𝑛
𝑒𝑒$:G| = 𝑒𝑒$:fRd| + 𝑝𝑝
f $ 1 + 𝑒𝑒$Df:GRf| , 𝑚𝑚 < 𝑛𝑛
𝑒𝑒$:G| = 𝑝𝑝$1 + 𝑒𝑒$Dd:GRd|
FractionalAges
UDD 0 ≤ 𝑠𝑠 + 𝑡𝑡 ≤ 1
𝑙𝑙$DM = 1 − 𝑠𝑠 ⋅ 𝑙𝑙$+ 𝑠𝑠 ⋅ 𝑙𝑙$Dd
𝑞𝑞
M $ = 𝑠𝑠 ⋅ 𝑞𝑞$
𝑞𝑞
M $D# =𝑠𝑠 ⋅ 𝑞𝑞$
1 − 𝑡𝑡 ⋅ 𝑞𝑞$
𝜇𝜇$DM =𝑞𝑞$
1 − 𝑠𝑠 ⋅ 𝑞𝑞$
𝑞𝑞$= 𝑝𝑝
M $ ⋅ 𝜇𝜇$DM
ConstantForceofMortality 0 ≤ 𝑠𝑠 + 𝑡𝑡 ≤ 1
𝑙𝑙$DM = 𝑙𝑙$dRM ⋅𝑙𝑙$Dd M
𝑝𝑝
M $ = 𝑝𝑝
M $D# =𝑝𝑝$M
𝜇𝜇$DM = − ln 𝑝𝑝$
Selectandultimatemortality
Apersonis‘selected’attheagewhenthepolicyis
firstpurchased.
Selectmortalityiswrittenas𝑞𝑞$ D# where𝑥𝑥isthe
‘selected’ age and 𝑡𝑡is the number of years after
selection.
After a certain number of years of‘select period’,
mortalityiscalledthe‘ultimate’mortality.
𝑞𝑞$ D# = 𝑞𝑞$D#.
Readthe2-yearselectandultimatemortalitytable
from the left to the right and then continue
downwards.
𝑥𝑥
𝑞𝑞$
𝑞𝑞$ Dd
𝑞𝑞$ Dh
𝑥𝑥 + 2
30
32
31
33
32
34
33
35
INSURANCE
LevelAnnualInsurance
Typeof
Insurance
EPV
WholeLife
Discrete
𝐴𝐴$= 𝑣𝑣bDd ⋅
]
bcO
𝑞𝑞
b| $
Continuous
𝐴𝐴$=𝑣𝑣#⋅
]
O
𝑝𝑝
# $ ⋅ 𝜇𝜇$D# d𝑡𝑡
TermLife
Discrete
𝐴𝐴$:G|
d= 𝐴𝐴$− 𝐸𝐸
G $ ⋅ 𝐴𝐴$DG
Continuous
𝐴𝐴$∶G|
d = 𝐴𝐴$− 𝐸𝐸
G $ ⋅ 𝐴𝐴$DG
DeferredLife
Discrete
𝐴𝐴
G| $= 𝐴𝐴$− 𝐴𝐴$:G|
d= 𝐸𝐸
G $ ⋅ 𝐴𝐴$DG
Continuous
𝐴𝐴
G| $= 𝐴𝐴$− 𝐴𝐴$∶G|
d = 𝐸𝐸
G $ ⋅ 𝐴𝐴$DG
Pure
Endowment
Discrete
𝐴𝐴$:G|
d = 𝐸𝐸
G $ = 𝑣𝑣G𝑝𝑝
G $
Continuous
N/A
Endowment
Insurance
Discrete
𝐴𝐴$:G|
= 𝐴𝐴$:G|
d+ 𝐸𝐸
G $
Continuous
𝐴𝐴$:G|
= 𝐴𝐴$:G|
d + 𝐸𝐸
G $
EPVunderConstantForceofMortality
Discrete
Continuous
𝐴𝐴$=𝑞𝑞
𝑞𝑞 + 𝑖𝑖
𝐴𝐴$=𝜇𝜇
𝜇𝜇 + 𝛿𝛿
𝐴𝐴$:G|
d=𝑞𝑞
𝑞𝑞 + 𝑖𝑖 1 − 𝐸𝐸
G $
𝐴𝐴$:G|
d =𝜇𝜇
𝜇𝜇 + 𝛿𝛿 1 − 𝐸𝐸
G $
𝐴𝐴
G| $=𝑞𝑞
𝑞𝑞 + 𝑖𝑖 ⋅ 𝐸𝐸
G $
𝐴𝐴
G| $=𝜇𝜇
𝜇𝜇 + 𝛿𝛿 ⋅ 𝐸𝐸
G $
𝐸𝐸
G $ = 𝑣𝑣G𝑝𝑝G
𝐸𝐸
G $ = 𝑒𝑒R(SDo)G
EPVunderUniformDistribution
Discrete
Continuous
𝐴𝐴$=𝑎𝑎rR$|
𝜔𝜔 − 𝑥𝑥
𝐴𝐴$=𝑎𝑎rR$|
𝜔𝜔 − 𝑥𝑥
𝐴𝐴$:G|
d=𝑎𝑎G|
𝜔𝜔 − 𝑥𝑥
𝐴𝐴$:G|
d =𝑎𝑎G|
𝜔𝜔 − 𝑥𝑥
𝐸𝐸
G $ = 𝑣𝑣G⋅𝜔𝜔 − 𝑥𝑥 − 𝑛𝑛
𝜔𝜔 − 𝑥𝑥
𝐸𝐸
G $ = 𝑣𝑣G⋅𝜔𝜔 − 𝑥𝑥 − 𝑛𝑛
𝜔𝜔 − 𝑥𝑥
SURVIVAL DISTRIBUTIONS
INSURANCE
Students also viewed
- Getting Started with R
- computer science 128
- An essay is, generally, a piece of writing that gives the author's own argument, but the definition is vague, overlapping with those of a letter, a paper, an article, a pamphlet, and a short story. Es
- Quiz 2 Math Discretes - Answer for the question
- Final ITT450 Ogos 2021 lab network design
- Edu 2014 spring mlc solution