Skip to document

Formula MLC by Coaching Actuaties

These are the formula possibly used in this course.
Course

Actuarial Science (CS242)

54 Documents
Students shared 54 documents in this course
Academic year: 2021/2022
Uploaded by:
Anonymous Student
This document has been uploaded by a student, just like you, who decided to remain anonymous.
Technische Universiteit Delft

Comments

Please sign in or register to post comments.

Preview text

Raise Your Odds® with Adapt

Exam MLC

SURVIVAL DISTRIBUTIONS

Probability Functions Actuarial Notations # $𝑝𝑝 =Probability that 𝑥𝑥 survives 𝑡𝑡 years = Pr𝑇𝑇$> 𝑡𝑡 = 𝐴𝐴$𝑡𝑡 # $𝑞𝑞 =Probability that 𝑥𝑥 dies within 𝑡𝑡 years = Pr𝑇𝑇$≤ 𝑡𝑡 = 𝐹𝐹$𝑡𝑡 # $𝑝𝑝 + 𝑞𝑞# $= 1 #|3𝑞𝑞$=Probability that 𝑥𝑥 survives 𝑡𝑡 years and dies within the following 𝑢𝑢 years = #𝑝𝑝$⋅ 3 𝑞𝑞$D# = #𝑝𝑝$− #D3𝑝𝑝$ = #D3𝑞𝑞$− #𝑞𝑞$ Life Table Functions G $𝑑𝑑 = 𝑙𝑙$− 𝑙𝑙$DG # $𝑝𝑝 =

𝑙𝑙$D#
𝑙𝑙$
# $𝑞𝑞 =
# $𝑑𝑑
𝑙𝑙$
=
𝑙𝑙$−𝑙𝑙$D#
𝑙𝑙$
#|3𝑞𝑞$=
3 $D#𝑑𝑑
𝑙𝑙$ =
𝑙𝑙$D#−𝑙𝑙$D#D
𝑙𝑙$

Force of Mortality

𝜇𝜇$D#=

𝑓𝑓$𝑡𝑡
𝐴𝐴$𝑡𝑡
𝜇𝜇$D#= −
𝑑𝑑

d𝑡𝑡ln𝐴𝐴$𝑡𝑡

𝜇𝜇$D#= −

𝑑𝑑

d𝑡𝑡

ln 𝑝𝑝# $

𝑓𝑓$𝑡𝑡 = 𝑝𝑝# $⋅𝜇𝜇$D#

$𝑝𝑝 = exp − 𝜇𝜇$DM d𝑠𝑠null

O

$𝑞𝑞 = M.𝑝𝑝$⋅𝜇𝜇$DM d𝑠𝑠null

O

#|3𝑞𝑞$= M.𝑝𝑝$⋅𝜇𝜇$DM d𝑠𝑠

#D

null

Mortality Laws Constant Force of Mortality 𝜇𝜇$= 𝜇𝜇

$𝑝𝑝 = 𝑒𝑒RS#

Uniform Distribution

𝜇𝜇$=

1
𝜔𝜔 −𝑥𝑥
, 0 ≤ 𝑥𝑥 < 𝜔𝜔
# $𝑝𝑝 =
𝜔𝜔 −𝑥𝑥 −𝑡𝑡
𝜔𝜔 −𝑥𝑥 , 0 ≤ 𝑡𝑡 ≤ 𝜔𝜔 −𝑥𝑥
#|3𝑞𝑞$=
𝑢𝑢
𝜔𝜔 −𝑥𝑥, 0 ≤ 𝑡𝑡 +𝑢𝑢 ≤ 𝜔𝜔 −𝑥𝑥

Beta Distribution

𝜇𝜇$=

𝛼𝛼
𝜔𝜔 −𝑥𝑥, 0 ≤ 𝑥𝑥 < 𝜔𝜔
# $𝑝𝑝 =
𝜔𝜔 −𝑥𝑥 −𝑡𝑡
𝜔𝜔 −𝑥𝑥

Y , 0 ≤ 𝑡𝑡 ≤ 𝜔𝜔 −𝑥𝑥

Gompertz’s Law 𝜇𝜇$= 𝐵𝐵𝑐𝑐$, 𝑐𝑐 > 1

$𝑝𝑝 = exp −
𝐵𝐵𝑐𝑐$𝑐𝑐#−

ln𝑐𝑐 Makeham’s Law 𝜇𝜇$= 𝐴𝐴 +𝐵𝐵𝑐𝑐$, 𝑐𝑐 > 1

$𝑝𝑝 = exp −𝐴𝐴𝑡𝑡 −
𝐵𝐵𝑐𝑐$𝑐𝑐#−

ln𝑐𝑐

Moments Complete Future Lifetime General 𝑒𝑒

∘ $= # $𝑝𝑝

]

O

d𝑡𝑡

Constant Force of Mortality 𝑒𝑒

∘ $=

1
𝜇𝜇

Uniform Distribution 𝑒𝑒

∘ $=

𝜔𝜔 −𝑥𝑥
2

Beta Distribution 𝑒𝑒

∘ $=

𝜔𝜔 −𝑥𝑥
𝛼𝛼 +

n -year Temporary Complete Future Lifetime 𝑒𝑒

∘ $:G|= # $𝑝𝑝

G O

d𝑡𝑡

ïUniform Distribution 𝑒𝑒

∘ $:G|= 𝑝𝑝G $𝑛𝑛+ 𝑞𝑞G $

𝑛𝑛
2

Curtate Future Lifetime

𝑒𝑒$= 𝑘𝑘 ⋅

]

bcd

b|𝑞𝑞$= b𝑝𝑝$

]

bcd ïUniform Distribution 𝑒𝑒$= 𝑒𝑒∘$−0. n -year Temporary Curtate Future Lifetime

𝑒𝑒$:G|= 𝑘𝑘 ⋅

GRd

bcd

b|𝑞𝑞$+𝑛𝑛 ⋅ 𝑝𝑝G $= b𝑝𝑝$

G

bcd ïUniform Distribution 𝑒𝑒$:G|= 𝑒𝑒

∘ $:G|−0 𝑞𝑞G.$ Recursive Formulas 𝑒𝑒

∘ $= 𝑒𝑒

∘ $:G|+ 𝑝𝑝G $⋅𝑒𝑒

∘ $DG 𝑒𝑒

∘ $:G|= 𝑒𝑒

∘ $:f|+ 𝑝𝑝f $⋅𝑒𝑒

∘ $Df:GRf|, 𝑚𝑚 < 𝑛𝑛 𝑒𝑒$= 𝑒𝑒$:G|+ 𝑝𝑝G $⋅𝑒𝑒$DG= 𝑒𝑒$:GRd|+ 𝑝𝑝G $1+𝑒𝑒$DG 𝑒𝑒$= 𝑝𝑝$1+𝑒𝑒$Dd 𝑒𝑒$:G|= 𝑒𝑒$:f|+ 𝑝𝑝f $⋅𝑒𝑒$Df:GRf|, 𝑚𝑚 < 𝑛𝑛 𝑒𝑒$:G|= 𝑒𝑒$:fRd|+ 𝑝𝑝f $ 1+𝑒𝑒$Df:GRf| , 𝑚𝑚 < 𝑛𝑛 𝑒𝑒$:G|= 𝑝𝑝$ 1+𝑒𝑒$Dd:GRd| Fractional Ages UDD 0 ≤ 𝑠𝑠 +𝑡𝑡 ≤ 1 𝑙𝑙$DM=1−𝑠𝑠⋅𝑙𝑙$+𝑠𝑠 ⋅𝑙𝑙$Dd M $𝑞𝑞 = 𝑠𝑠 ⋅𝑞𝑞$ M $D#𝑞𝑞 =

𝑠𝑠 ⋅𝑞𝑞$
1−𝑡𝑡 ⋅𝑞𝑞$
𝜇𝜇$DM=
𝑞𝑞$
1−𝑠𝑠 ⋅𝑞𝑞$
𝑞𝑞$= 𝑝𝑝M $⋅𝜇𝜇$DM

Constant Force of Mortality 0 ≤ 𝑠𝑠 +𝑡𝑡 ≤ 1 𝑙𝑙$DM=𝑙𝑙$dRM⋅𝑙𝑙$DdM M $𝑝𝑝 = 𝑝𝑝M $D#= 𝑝𝑝$M 𝜇𝜇$DM= − ln𝑝𝑝$ Select and ultimate mortality A person is ‘selected’ at the age when the policy is first purchased. Select mortality is written as 𝑞𝑞$D# where 𝑥𝑥 is the ‘selected’ age and 𝑡𝑡 is the number of years after selection.

Aft er a certain number of years of ‘select period’, mortality is called the ‘ultimate’ mortality. 𝑞𝑞$D#= 𝑞𝑞$D#.

Read the 2-year select and ultimate mortality table from the left to the right and then continue downwards. 𝑥𝑥 𝑞𝑞$ 𝑞𝑞$Dd 𝑞𝑞$Dh 𝑥𝑥 + 30 32 31 33 32 34 33 35

INSURANCE

Level Annual Insurance Type of Insurance EPV

Whole Life

Discrete

𝐴𝐴$= 𝑣𝑣bDd⋅

]

bcO

b|𝑞𝑞$

Continuous

𝐴𝐴$= 𝑣𝑣#⋅

]

O

$𝑝𝑝 ⋅𝜇𝜇$D# d𝑡𝑡

Term Life

Discrete 𝐴𝐴$:G|d = 𝐴𝐴$− 𝐸𝐸G $⋅𝐴𝐴$DG Continuous 𝐴𝐴 $∶G| d = 𝐴𝐴$− 𝐸𝐸G $⋅𝐴𝐴$DG

Deferred Life

Discrete G|𝐴𝐴$= 𝐴𝐴$−𝐴𝐴$:G|d = 𝐸𝐸G $⋅𝐴𝐴$DG Continuous G|𝐴𝐴$= 𝐴𝐴$−𝐴𝐴$∶G| d = 𝐸𝐸G $⋅𝐴𝐴$DG

Pure Endowment

Discrete 𝐴𝐴$:G| d= 𝐸𝐸G $= 𝑣𝑣GG $𝑝𝑝 Continuous N/A

Endowment Insurance

Discrete 𝐴𝐴$:G| = 𝐴𝐴$:G|d + 𝐸𝐸G $ Continuous 𝐴𝐴$:G| = 𝐴𝐴 d $:G|+ 𝐸𝐸G $

EPV under Constant Force of Mortality Discrete Continuous 𝐴𝐴$=

𝑞𝑞
𝑞𝑞 +𝑖𝑖 𝐴𝐴$=
𝜇𝜇
𝜇𝜇 +𝛿𝛿

𝐴𝐴$:G|d =

𝑞𝑞
𝑞𝑞 +𝑖𝑖

1− 𝐸𝐸G $ 𝐴𝐴 $:G| d =

𝜇𝜇
𝜇𝜇 +𝛿𝛿 1− 𝐸𝐸G $
G|𝐴𝐴$=
𝑞𝑞
𝑞𝑞 +𝑖𝑖⋅ 𝐸𝐸G $ G|𝐴𝐴$=
𝜇𝜇
𝜇𝜇 +𝛿𝛿⋅ 𝐸𝐸G $

G $𝐸𝐸= 𝑣𝑣G𝑝𝑝G G $𝐸𝐸 = 𝑒𝑒R(SDo)G

EPV under Uniform Distribution Discrete Continuous 𝐴𝐴$=

𝑎𝑎rR$| 𝜔𝜔 −𝑥𝑥 𝐴𝐴$=

𝑎𝑎rR$| 𝜔𝜔 −𝑥𝑥 𝐴𝐴$:G|d =

𝑎𝑎G|
𝜔𝜔 −𝑥𝑥 𝐴𝐴 $:G|
d = 𝑎𝑎G|
𝜔𝜔 −𝑥𝑥

G $𝐸𝐸 = 𝑣𝑣G⋅

𝜔𝜔 −𝑥𝑥 −𝑛𝑛
𝜔𝜔 −𝑥𝑥
G $𝐸𝐸= 𝑣𝑣G⋅
𝜔𝜔 −𝑥𝑥 −𝑛𝑛
𝜔𝜔 −𝑥𝑥
SURVIVAL DISTRIBUTIONS
INSURANCE

m -thly Insurance

𝐴𝐴$(f)= 𝑣𝑣bDd/f⋅

]

bcO

b 𝑞𝑞 f |

d f$ Recursive Formulas Discrete 𝐴𝐴$= 𝑣𝑣𝑞𝑞$+𝑣𝑣𝑝𝑝$⋅𝐴𝐴$Dd 𝐴𝐴$= 𝑣𝑣𝑞𝑞$+𝑣𝑣h𝑝𝑝$𝑞𝑞$Dd+𝑣𝑣hh𝑝𝑝$⋅𝐴𝐴$Dh 𝐴𝐴d$:G|= 𝑣𝑣𝑞𝑞$+𝑣𝑣𝑝𝑝$⋅𝐴𝐴$Dd:GRd| d 𝐴𝐴$:G|= 𝑣𝑣𝑞𝑞$+𝑣𝑣𝑝𝑝$⋅𝐴𝐴$Dd:GRd| G|𝐴𝐴$= 𝑣𝑣𝑝𝑝$⋅ 𝐴𝐴GRd|$Dd 𝐴𝐴$:G| d= 𝑣𝑣𝑝𝑝$⋅𝐴𝐴$Dd:GRd| d Continuous 𝐴𝐴$ = 𝐴𝐴$:d|d +𝑣𝑣𝑝𝑝$⋅𝐴𝐴$Dd 𝐴𝐴$= 𝐴𝐴$:d|d +𝑣𝑣𝑝𝑝$⋅𝐴𝐴$Dd:d| d +𝑣𝑣hh𝑝𝑝$⋅𝐴𝐴$Dh 𝐴𝐴d$:G|= 𝐴𝐴d$:d|+𝑣𝑣𝑝𝑝$⋅𝐴𝐴$Dd:GRd| d 𝐴𝐴$:G|= 𝐴𝐴$:d|d +𝑣𝑣𝑝𝑝$⋅𝐴𝐴$Dd:GRd| G|𝐴𝐴$= 𝑣𝑣𝑝𝑝$⋅ 𝐴𝐴GRd|$Dd

Variances Discrete Var𝑍𝑍$ = 𝐴𝐴h$−𝐴𝐴$h Var𝑍𝑍$:G| = 𝐴𝐴h$:G|−𝐴𝐴$:G|h Continuous Var𝑍𝑍$ = 𝐴𝐴h$−𝐴𝐴$h Var𝑍𝑍$:G| = 𝐴𝐴h$:G|−𝐴𝐴$:G|h Note: h𝐴𝐴 and h𝐴𝐴 are calculated similar to 𝐴𝐴 and 𝐴𝐴 respectively, but with double the force of interest, 𝛿𝛿. Equivalently, replace 𝑣𝑣 with 𝑣𝑣h, or replace 𝑖𝑖 with 2𝑖𝑖 +𝑖𝑖h. For example, under constant force, h𝐴𝐴$= u uDhvDvw and 𝐴𝐴

h $= S SDho. Increasing and Decreasing Insurance 𝐼𝐼𝐴𝐴$= 𝐴𝐴$+ 𝐴𝐴d|. $+ 𝐴𝐴h|.$+⋯

𝐼𝐼𝐴𝐴$= 𝑡𝑡𝑣𝑣#⋅

]

O

$𝑝𝑝 ⋅𝜇𝜇$D# d𝑡𝑡

𝐼𝐼𝐴𝐴 $:G| d = 𝑡𝑡𝑣𝑣#⋅

G O

$𝑝𝑝 ⋅𝜇𝜇$D# d𝑡𝑡

𝐷𝐷𝐴𝐴 $:G| d = 𝑛𝑛 −𝑡𝑡𝑣𝑣#⋅

G O

$𝑝𝑝⋅𝜇𝜇$D# d𝑡𝑡

𝐼𝐼𝐴𝐴 $:G| d + 𝐷𝐷𝐴𝐴 $:G| d =𝑛𝑛 +1⋅𝐴𝐴 $:G| d 𝐼𝐼𝐴𝐴 $:G| d +𝐷𝐷𝐴𝐴 $:G| d = 𝑛𝑛 +1⋅𝐴𝐴 $:G| d 𝐼𝐼𝐴𝐴 $:G| d +𝐷𝐷𝐴𝐴 $:G| d = 𝑛𝑛 ⋅𝐴𝐴 $:G| d

EPV under Constant Force Discrete Continuous 𝐼𝐼𝐴𝐴$=

1
𝑣𝑣𝑞𝑞
𝑞𝑞
𝑞𝑞 +𝑖𝑖

h 𝐼𝐼𝐴𝐴$=

𝜇𝜇

𝜇𝜇 +𝛿𝛿h

EPV under Uniform Distribution Discrete Continuous 𝐼𝐼𝐴𝐴$=

𝐼𝐼𝑎𝑎rR$| 𝜔𝜔 −𝑥𝑥

𝐼𝐼𝐴𝐴$=

𝐼𝐼𝑎𝑎rR$| 𝜔𝜔 −𝑥𝑥 𝐼𝐼𝐴𝐴 $:G| d =

𝐼𝐼𝑎𝑎G|
𝜔𝜔 −𝑥𝑥

𝐼𝐼𝐴𝐴 $:G| d =

𝐼𝐼𝑎𝑎G|
𝜔𝜔 −𝑥𝑥

𝐷𝐷𝐴𝐴 $:G| d =

𝐷𝐷𝑎𝑎G|
𝜔𝜔 −𝑥𝑥 𝐷𝐷𝐴𝐴 $:G|
d =𝐷𝐷𝑎𝑎G|

𝜔𝜔 −𝑥𝑥 Recursive Formulas 𝐼𝐼𝐴𝐴 $:G| d = 𝐴𝐴 $:G| d +𝑣𝑣𝑝𝑝$⋅𝐼𝐼𝐴𝐴 $Dd:GRd| d 𝐷𝐷𝐴𝐴 $:G| d = 𝐴𝐴 $:G| d +𝐷𝐷𝐴𝐴 $:GRd| d

**Relationship between ** 𝑨𝑨𝒙𝒙 **, ** 𝑨𝑨𝒙𝒙(𝒎𝒎) ** and ** 𝑨𝑨𝒙𝒙 (Under UDD Assumption) 𝐴𝐴$=

𝑖𝑖
𝛿𝛿
𝐴𝐴$

𝐴𝐴 $:G| d =

𝑖𝑖
𝛿𝛿𝐴𝐴 $:G|
d
G|𝐴𝐴$=
𝑖𝑖
𝛿𝛿G|𝐴𝐴$
𝐴𝐴$:G|=
𝑖𝑖
𝛿𝛿𝐴𝐴 $:G|
d +𝐴𝐴
    $:G|

                    d

𝐴𝐴$(f)=

𝑖𝑖

𝑖𝑖(f)𝐴𝐴$ h𝐴𝐴$= 2𝑖𝑖 +𝑖𝑖h 2𝛿𝛿 ⋅ 𝐴𝐴

h $

ANNUITIES

Level Annual Annuities Type of Annuities EPV

Whole Life

Due; Discrete

𝑎𝑎$= 𝑣𝑣b⋅ 𝑝𝑝b$

]

bcO Immediate; Discrete 𝑎𝑎$= 𝑎𝑎$− Continuous 𝑎𝑎$= 𝑣𝑣#⋅

] O

$𝑝𝑝 d𝑡𝑡

Temporary Life

Due; Discrete 𝑎𝑎$:G|= 𝑎𝑎$− 𝐸𝐸G $⋅𝑎𝑎$DG Immediate; Discrete 𝑎𝑎$:G|= 𝑎𝑎$:G|−1+ 𝐸𝐸$G Continuous 𝑎𝑎$:G|= 𝑎𝑎$− 𝐸𝐸G $⋅𝑎𝑎$DG

Deferred Whole Life

Due; Discrete G|𝑎𝑎$= 𝑎𝑎$−𝑎𝑎$:G|= 𝐸𝐸G $⋅𝑎𝑎$DG Immediate; Discrete G|𝑎𝑎$= 𝑎𝑎$−𝑎𝑎$:G|= 𝐸𝐸G $⋅𝑎𝑎$DG Continuous G|𝑎𝑎$= 𝑎𝑎$−𝑎𝑎$:G|= 𝐸𝐸G $⋅𝑎𝑎$DG

EPV under Constant Force of Mortality Discrete Continuous 𝑎𝑎$=

1+𝑖𝑖
𝑞𝑞 +𝑖𝑖
𝑎𝑎$=
1
𝜇𝜇 +𝛿𝛿
𝑎𝑎$:G|=
1+𝑖𝑖
𝑞𝑞 +𝑖𝑖
1− 𝐸𝐸G $ 𝑎𝑎$:G|=
1
𝜇𝜇 +𝛿𝛿
1− 𝐸𝐸G $
G|𝑎𝑎$=
1+𝑖𝑖
𝑞𝑞 +𝑖𝑖⋅ 𝐸𝐸G $ G|𝑎𝑎$=
1
𝜇𝜇 +𝛿𝛿⋅ 𝐸𝐸G $

G $𝐸𝐸 = 𝑣𝑣G𝑝𝑝G G $𝐸𝐸 = 𝑒𝑒R(SDo)G

Recursive Formulas Discrete 𝑎𝑎$= 1+𝑣𝑣𝑝𝑝$⋅𝑎𝑎$Dd 𝑎𝑎$:G|= 1+𝑣𝑣𝑝𝑝$⋅𝑎𝑎$Dd:GRd| G|𝑎𝑎$= 𝑣𝑣𝑝𝑝$⋅ 𝑎𝑎GRd|$Dd Continuous 𝑎𝑎$= 𝑎𝑎$:d|+𝑣𝑣𝑝𝑝$⋅𝑎𝑎$Dd 𝑎𝑎$:G|= 𝑎𝑎$:d|+𝑣𝑣𝑝𝑝$⋅𝑎𝑎$Dd:GRd| G|𝑎𝑎$= 𝑣𝑣𝑝𝑝$⋅ 𝑎𝑎GRd|$Dd Relationship between Insurances and Annuities Discrete Continuous 𝐴𝐴$= 1−𝑑𝑑𝑎𝑎$ 𝐴𝐴$= 1−𝛿𝛿𝑎𝑎$ 𝐴𝐴$:G|= 1−𝑑𝑑𝑎𝑎$:G| 𝐴𝐴$:G|= 1−𝛿𝛿𝑎𝑎$:G| Variances Discrete Var𝑌𝑌$ =Var𝑌𝑌$ =

h𝐴𝐴$−𝐴𝐴$h 𝑑𝑑h

Var𝑌𝑌$:G| = Var𝑌𝑌$:GRd| =

h𝐴𝐴$:G|−𝐴𝐴$:G|h 𝑑𝑑h Continuous Var𝑌𝑌$ =

h𝐴𝐴$−𝐴𝐴$h 𝛿𝛿h

Var𝑌𝑌$:G| =

h𝐴𝐴$:G|−𝐴𝐴$:G|h 𝛿𝛿h Increasing and Decreasing Annuities 𝐼𝐼𝑎𝑎$:G| = 𝑡𝑡𝑣𝑣#⋅

G

O

$𝑝𝑝 d𝑡𝑡

𝐼𝐼𝑎𝑎$ =

1

𝜇𝜇 +𝛿𝛿h if 𝜇𝜇 is constant 𝐷𝐷𝑎𝑎$:G| = 𝑛𝑛 −𝑡𝑡𝑣𝑣#⋅

G O

$𝑝𝑝 d𝑡𝑡

𝐼𝐼𝑎𝑎$:G| +𝐷𝐷𝑎𝑎$:G| = 𝑛𝑛𝑎𝑎$:G| 𝐼𝐼𝑎𝑎$:G| +𝐷𝐷𝑎𝑎$:G| = 𝑛𝑛 +1𝑎𝑎$:G| **Annuities with ** m -thly Payments UDD Assumption 𝑎𝑎$(f)= 𝛼𝛼𝑚𝑚⋅𝑎𝑎$−𝛽𝛽(𝑚𝑚) 𝑎𝑎$:G|(f)= 𝛼𝛼𝑚𝑚⋅𝑎𝑎$:G|−𝛽𝛽(𝑚𝑚)(1− 𝐸𝐸$G ) G|𝑎𝑎$(f)= 𝛼𝛼𝑚𝑚⋅ 𝑎𝑎G|$−𝛽𝛽𝑚𝑚⋅ 𝐸𝐸$G Woolhouse’s Formula (3 terms)

𝑎𝑎$(f)≈ 𝑎𝑎$−

𝑚𝑚 −
2𝑚𝑚 −

𝑚𝑚h− 12 𝑚𝑚h 𝜇𝜇$+𝛿𝛿 𝑎𝑎$:G|f ≈ 𝑎𝑎$:G|−

𝑚𝑚 −
2𝑚𝑚
1− 𝐸𝐸$G

𝑚𝑚h− 12 𝑚𝑚h 𝜇𝜇$+𝛿𝛿 − 𝐸𝐸$G 𝜇𝜇$DG+𝛿𝛿 G|𝑎𝑎$f≈ 𝑎𝑎G|$−

𝑚𝑚 −
2𝑚𝑚
𝐸𝐸$G

𝑚𝑚h− 12 𝑚𝑚h 𝐸𝐸$G 𝜇𝜇$DG+𝛿𝛿 𝑎𝑎$≈ 𝑎𝑎$−

1
2 −
1
12 𝜇𝜇$+𝛿𝛿
ANNUITIES

Continuous Probabilities

#𝑝𝑝$vv=exp − 𝜇𝜇$DMvê ê°v

d𝑠𝑠

null

O

For permanent disability model:

#𝑝𝑝$vê= M𝑝𝑝$vv⋅𝜇𝜇$DMvê ⋅ 𝑝𝑝#RM$DMêê d𝑠𝑠

null

O Kolmogorov’s Forward Equations d d𝑡𝑡 #𝑝𝑝$vê= Rate of entry into state 𝑗𝑗 −Rate of leaving state 𝑗𝑗

                                                        = #𝑝𝑝$vb⋅𝜇𝜇$D#bê − 𝑝𝑝#$vê⋅𝜇𝜇$D#êb

G

bcOb°ê

Euler’s Method

#Dö𝑝𝑝$vê≈ 𝑝𝑝#$vê+ℎ #𝑝𝑝$vb⋅𝜇𝜇$D#bê − 𝑝𝑝#$vê⋅𝜇𝜇$D#êb

G

bcO b°ê Premiums and Reserves Insurance pays benefit upon transition to state j :

𝐴𝐴$vê= 𝑒𝑒Ro##𝑝𝑝$vb⋅𝜇𝜇$D#bê b°ê

d𝑡𝑡

]

O

Annuity pays benefit as long as one remains in state j :

𝑎𝑎$vê= 𝑒𝑒Ro##𝑝𝑝$vê d𝑡𝑡

] O

𝑎𝑎$vê= 𝑣𝑣bb𝑝𝑝$vê

]

bcO 𝑎𝑎$vv=S¢ •dDo for constant force _, _ where 𝜇𝜇v is the

sum of forces of interest out of state 𝑖𝑖

Thiele’s Differential Equation d d𝑡𝑡 #𝑉𝑉v= 𝛿𝛿##𝑉𝑉v−𝐵𝐵#v

                                                                                − 𝜇𝜇$D#vê 𝑏𝑏#vê + 𝑉𝑉# ê − 𝑉𝑉# v

G

êcO ê°v 𝐵𝐵#v: difference between benefit and premium in state 𝑖𝑖 𝑏𝑏#vê: benefit for transitioning from state 𝑖𝑖 to 𝑗𝑗

Euler’s Method #Rö𝑉𝑉v= 𝑉𝑉# v 1−𝛿𝛿#ℎ +ℎ𝐵𝐵#v

                                                                            +ℎ 𝜇𝜇$D#vê 𝑏𝑏#vê+ 𝑉𝑉# ê− 𝑉𝑉# v

G

êcO ê°v

MULTIPLE DECREMENT MODELS

Probabilities

#𝑞𝑞$§= #𝑞𝑞$ê

G

êcd

#𝑞𝑞$ê = b𝑝𝑝$§

#Rd

bcO

𝑞𝑞$Dbê

#|3𝑞𝑞$ê = 𝑝𝑝#$§ 3 𝑞𝑞$D#ê = b𝑝𝑝$§𝑞𝑞$Dbê

#D3Rd

bc# Life Table Formulas

𝑑𝑑$§= 𝑑𝑑$ê

f

êcd 𝑙𝑙$Db§ = 𝑙𝑙$§b𝑝𝑝$§= 𝑙𝑙$§− 𝑑𝑑b$§

𝑑𝑑$Dbê = 𝑙𝑙$§b𝑝𝑝$§𝑞𝑞$Dbê

Discrete Insurances

𝐴𝐴 = 𝑣𝑣bbRd𝑝𝑝$(§)

]

bcd

𝑞𝑞$DbRd(ê) 𝑏𝑏b(ê) ê Continuous Insurances

𝐴𝐴= 𝑣𝑣##𝑝𝑝$§

]

O

𝜇𝜇$D#ê 𝑏𝑏#ê

G

êcd

d𝑡𝑡

Forces of Decrement #𝑞𝑞$ê= M𝑝𝑝$(§)

null

O

𝜇𝜇$DM(ê) d𝑠𝑠

𝜇𝜇$D#(ê) =

1
#𝑝𝑝$§

d#𝑞𝑞$ê d𝑡𝑡

𝜇𝜇$D#(§) = 𝜇𝜇$D#(ê)

G

êcd

#𝑝𝑝$(§)=exp − 𝜇𝜇$DM(§)

null

O

d𝑠𝑠 Fractional Ages UDD in the multiple decrement table: M𝑞𝑞$(ê)= 𝑠𝑠𝑞𝑞$(ê), 0 ≤ 𝑠𝑠 ≤ 1 Constant forces of decrement:

M𝑞𝑞$ê=

𝑞𝑞$ê 𝑞𝑞$§

1− 𝑝𝑝$§

M

Associated Single Decrement Tables The associated single decrements are independent.

#𝑝𝑝$•(ê)=exp − 𝜇𝜇$DM(ê)

null

O

d𝑠𝑠

#𝑞𝑞$•(ê)= M𝑝𝑝$•(ê)𝜇𝜇$DM(ê)

null

O

d𝑠𝑠

#𝑝𝑝$•(ê)

G

êcd

= 𝑝𝑝#$(§)

𝜇𝜇$D#ê = −

1

#𝑝𝑝$•ê

d#𝑝𝑝$•ê d𝑡𝑡 = −

d d𝑡𝑡ln 𝑝𝑝$

  • ê
null

UDD in Multiple-Decrement Tables (UDDMDT)

M𝑝𝑝$•ê = M𝑝𝑝$§

¶ß® ¶ß©, 0 ≤ 𝑠𝑠 ≤ 1 UDD in Associated Single Decrement Tables (UDDASDT) For 2 decrements:

#𝑞𝑞$(d)= 𝑞𝑞$•d 𝑡𝑡 −

𝑡𝑡h𝑞𝑞$•h 2

, 0 ≤ 𝑡𝑡 ≤ 1

For 3 decrements:

#𝑞𝑞$d= 𝑞𝑞$•d 𝑡𝑡 −

𝑡𝑡h𝑞𝑞$•h+𝑞𝑞$•™ 2 +

𝑡𝑡™𝑞𝑞$•h𝑞𝑞$•™ 3 , 0 ≤ 𝑡𝑡 ≤ 1

MULTIPLE LIVES

Joint Life 𝑇𝑇$ ̈= min𝑇𝑇$,𝑇𝑇 ̈

#𝑝𝑝$ ̈+ 𝑞𝑞#$ ̈= 1 #|3𝑞𝑞$ ̈ = 𝑝𝑝#$ ̈⋅ 𝑞𝑞$D#: ̈D# = 𝑝𝑝#$ ̈− 𝑝𝑝#D3$ ̈ = 𝑞𝑞#D3$ ̈− 𝑞𝑞#$ ̈ #D3𝑝𝑝$ ̈= 𝑝𝑝#$ ̈⋅ 𝑝𝑝$D#: ̈D# 𝑒𝑒

∘ $ ̈= #𝑝𝑝$ ̈

]

O

d𝑡𝑡

𝑒𝑒$ ̈= b𝑝𝑝$ ̈

]

bcd 𝐴𝐴$ ̈= 1−𝛿𝛿𝑎𝑎$ ̈

Independent Lives #𝑝𝑝$ ̈= 𝑝𝑝$# ⋅ 𝑝𝑝 ̈# 𝜇𝜇$D#: ̈D#= 𝜇𝜇$D#+𝜇𝜇 ̈D#

#𝑝𝑝$ ̈=exp − 𝜇𝜇$DM+𝜇𝜇 ̈DM

null

O

d𝑠𝑠 Last Survivor 𝑇𝑇$ ̈= max𝑇𝑇$,𝑇𝑇 ̈

#𝑝𝑝$ ̈+ 𝑞𝑞#$ ̈= 1 #|3𝑞𝑞$ ̈= 𝑝𝑝#$ ̈− 𝑝𝑝#D3$ ̈= 𝑞𝑞#D3$ ̈− 𝑞𝑞#$ ̈

𝑒𝑒

∘ $ ̈= #𝑝𝑝$ ̈

]

O

d𝑡𝑡

𝑒𝑒$ ̈= b𝑝𝑝$ ̈

]

bcd 𝐴𝐴$ ̈= 1−𝛿𝛿𝑎𝑎$ ̈

Independent Lives #𝑞𝑞$ ̈= 𝑞𝑞$# ⋅ 𝑞𝑞 ̈#

𝜇𝜇$ ̈𝑡𝑡 =

𝑞𝑞$∙ 𝑝𝑝 ̈𝜇𝜇 ̈D#+ 𝑞𝑞 ̈∙ 𝑝𝑝$𝜇𝜇$D#####
#𝑝𝑝$ ̈

Relationship between ** (𝒙𝒙𝒙𝒙 ) ** Status and (𝒙𝒙𝒙𝒙) ** Status** 𝑇𝑇$ ̈+𝑇𝑇$ ̈= 𝑇𝑇$+𝑇𝑇 ̈ #𝑝𝑝$ ̈+ 𝑝𝑝#$ ̈= 𝑝𝑝$# + 𝑝𝑝 ̈# 𝑒𝑒∘$ ̈+𝑒𝑒∘$ ̈= 𝑒𝑒∘$+𝑒𝑒∘ ̈ 𝑒𝑒$ ̈+𝑒𝑒$ ̈= 𝑒𝑒$+𝑒𝑒 ̈ Cov𝑇𝑇$ ̈,𝑇𝑇$ ̈ =Cov𝑇𝑇$,𝑇𝑇 ̈ +𝑒𝑒

∘ $−𝑒𝑒

∘ $ ̈ 𝑒𝑒

∘ ̈−𝑒𝑒

∘ $ ̈ Cov𝑇𝑇$,𝑇𝑇 ̈ = 0 if 𝑇𝑇$ and 𝑇𝑇 ̈ are independent 𝐴𝐴$ ̈+𝐴𝐴$ ̈= 𝐴𝐴$+𝐴𝐴 ̈ 𝑎𝑎$ ̈+𝑎𝑎$ ̈= 𝑎𝑎$+𝑎𝑎 ̈ G𝐸𝐸$ ̈+ 𝐸𝐸G$ ̈= 𝐸𝐸$G + 𝐸𝐸 ̈G Contingent Probabilities

G𝑞𝑞$ ̈d = #𝑝𝑝$ ̈∙𝜇𝜇$D#𝑑𝑑𝑡𝑡

G O G𝑞𝑞$ ̈ d= #𝑝𝑝$ ̈∙𝜇𝜇 ̈D#𝑑𝑑𝑡𝑡

G O 𝑞𝑞$ ̈d + 𝑞𝑞GG $ ̈ d=G𝑞𝑞$ ̈

G𝑞𝑞$ ̈h = 𝑝𝑝$# 1− 𝑝𝑝 ̈# ∙𝜇𝜇$D#𝑑𝑑𝑡𝑡

G

O G𝑞𝑞$ ̈ h= 𝑝𝑝 ̈# 1− 𝑝𝑝$# ∙𝜇𝜇 ̈D#𝑑𝑑𝑡𝑡

G

O 𝑞𝑞$ ̈h + 𝑞𝑞GG $ ̈ h=G𝑞𝑞$ ̈ G𝑞𝑞$ ̈d +G𝑞𝑞$ ̈h = 𝑞𝑞G$ G𝑞𝑞$ ̈ d+G𝑞𝑞$ ̈ h= 𝑞𝑞G ̈ G𝑞𝑞$ ̈d =G𝑞𝑞$ ̈ h+G𝑞𝑞$ G𝑝𝑝 ̈ Contingent Insurance 𝐴𝐴$ ̈d +𝐴𝐴$ ̈ d= 𝐴𝐴$ ̈ 𝐴𝐴$ ̈h +𝐴𝐴$ ̈ h= 𝐴𝐴$ ̈ 𝐴𝐴$ ̈d +𝐴𝐴$ ̈h = 𝐴𝐴$ 𝐴𝐴$ ̈d −𝐴𝐴$ ̈ h= 𝐴𝐴$−𝐴𝐴$ ̈= 𝐴𝐴$ ̈−𝐴𝐴 ̈ Reversionary Annuities 𝑎𝑎$| ̈= 𝑎𝑎 ̈−𝑎𝑎$ ̈

MULTIPLE DECREMENT MODELS MULTIPLE LIVES

coachingactuaries.comwww.coachingactuaries Copyright © 2016 Coaching Actuaries. All Rights Reserved. 5

Copyright © 2016 Coaching Actuaries. All Rights Reserved. 5

Personal copies permitted. Resale or distribution is prohibited.

PENSION MATHEMATICS

Replacement Ratio _, R _

𝑅𝑅 =

1st year pension after retirement salary in the final year of work Salary Rate Assumption ï Salaries increase continuously 𝑠𝑠 ̈ 𝑠𝑠$=

salary rate at age 𝑦𝑦 salary rate at age 𝑥𝑥 Salary Scale Assumption ï Salaries increase at discrete intervals 𝑠𝑠 ̈ 𝑠𝑠$=

salary earned between age 𝑦𝑦 and 𝑦𝑦 + salary earned between age 𝑥𝑥 and 𝑥𝑥 + Final average salary over the last 3 years (e. retire at age 65)

=

1 3 𝑠𝑠≤h+𝑠𝑠≤™+𝑠𝑠≤≥ 𝑠𝑠$ ⋅Salary between age 𝑥𝑥 and 𝑥𝑥 + Salary rate to salary scale : 𝑠𝑠$= 𝑠𝑠$D#

d

O

d𝑡𝑡

Salary scale to salary rate : 𝑠𝑠 $= 𝑠𝑠$RO.μ Normal Contribution 𝐶𝐶#= 𝑣𝑣 𝑝𝑝d$OO#Dd𝑉𝑉− 𝑉𝑉# + EPV(mid-year exits benefits) ï TUC if the actuarial liability is calculated with the traditional unit method ï PUC if the actuarial liability is calculated with the projected unit method. Under constant and independent of salary accrual rate with no exit benefits: ï TUC: 𝑉𝑉∂ß∑∏∂ ß

GDd O G −1 PUC: 𝑉𝑉

d O G

INTEREST RATE RISK

Replicating Cash Flows Spot rate, 𝑦𝑦#: effective interest rate paid by a zero- coupon bond maturing at time 𝑡𝑡 𝑣𝑣𝑡𝑡: Present value of 1 paid at time 𝑡𝑡 𝑣𝑣𝑡𝑡=

1
1+𝑦𝑦##

Forward rate, 𝑓𝑓𝑡𝑡,𝑡𝑡 +𝑘𝑘: yield paid at time 0 by a zero -coupon bond bought at time 𝑡𝑡 and maturing for 1 at time 𝑡𝑡 +𝑘𝑘

1+𝑓𝑓𝑡𝑡,𝑡𝑡 +𝑘𝑘 b=

𝑣𝑣𝑡𝑡
𝑣𝑣𝑡𝑡 +𝑘𝑘 =

1+𝑦𝑦#Db#Db 1+𝑦𝑦## Variance of loss per policy

Var

𝐿𝐿ã 𝑛𝑛 =Var𝐸𝐸𝐿𝐿

v𝐼𝐼 +𝐸𝐸Var𝐿𝐿

d𝐼𝐼 𝑛𝑛

PROFIT TESTS

Asset Shares b𝐴𝐴𝐴𝐴= bRd𝐴𝐴𝐴𝐴+𝐺𝐺bRd−𝑒𝑒bRd 1+𝑖𝑖 −𝑞𝑞$DbRdπ 𝑏𝑏b+𝐸𝐸b(π) −𝑞𝑞$DbRd∫ bCV+𝐸𝐸b(∫) / 1−𝑞𝑞$DbRdπ −𝑞𝑞$DbRd∫ 𝐺𝐺 = gross premium, 𝑒𝑒 = level expenses, 𝑏𝑏 = face amount, 𝐸𝐸ê = settlement expenses paid on decrement 𝑗𝑗, 𝐶𝐶𝑉𝑉 = cash value Profits for Traditional Products Profit Vector , Prb Profit per policy in force at the beginning of each year Prb= bRd𝑉𝑉+𝐺𝐺bRd−𝑒𝑒bRd 1+𝑖𝑖 −𝑞𝑞$DbRdπ 𝑏𝑏b+𝐸𝐸bπ −𝑞𝑞$DbRd∫ bCV+𝐸𝐸b∫ −𝑝𝑝$DbRd(§) b𝑉𝑉

Profit Signature _, _ Πb Profit per policy issued Πb= Prb⋅ 𝑝𝑝bRd$ , 𝑘𝑘 ≥ 1 Πb= Prb , 𝑘𝑘 = 0 Change in reserve Δb𝑉𝑉 = 1+𝑖𝑖bRd𝑉𝑉−𝑝𝑝$DbRd(§) b𝑉𝑉

IRR: GbcOΠb𝑣𝑣b= 0 NPV = ]bcOΠb𝑣𝑣øb, where 𝑟𝑟 = discount/hurdle rate Partial NPV

NPV𝑡𝑡 = Πb𝑣𝑣øb

null

bcO

,

where 𝑟𝑟 = discount/hurdle rate

Profit Margin The ratio of the NPV to the (expected) present value of future premiums. Discounted Payback Period (DPP)

Solve for lowest 𝑚𝑚 such that Πb𝑣𝑣b

f

bcO

= 0.

Universal Life General AV#= AV#Rd+𝑃𝑃#−𝑒𝑒#−COI# 1+𝑖𝑖 COI#= 𝑣𝑣u𝑞𝑞$D#RdDB#−AV#

Type A (Death Benefit = Face Amount)

AV#=

AV#Rd+𝑃𝑃#−𝑒𝑒# 1+𝑖𝑖 −𝑞𝑞$D#RdFA 1−𝑞𝑞$D#Rd Type B (Death Benefit = Face Amount + AV√) AV#= AV#Rd+𝑃𝑃#−𝑒𝑒# 1+𝑖𝑖 −𝑞𝑞$D#RdFA

Corridor Factor, γ AV#=

AV#Rd+𝑃𝑃#−𝑒𝑒# 1+𝑖𝑖 1+𝑞𝑞$D#Rd𝛾𝛾 − _If _ 𝛾𝛾 ⋅ AV #> _death benefit, set death benefit _ = 𝛾𝛾 ⋅ AV #.

Note : For all types, replace 𝑞𝑞$D#Rd with 𝑞𝑞$D#Rd1+𝑖𝑖𝑣𝑣u if 𝑖𝑖 ≠ 𝑖𝑖u Gain by Source Total Profit = bRd𝑉𝑉+𝐺𝐺b−𝑒𝑒b 1+𝑖𝑖 −𝑞𝑞$DbRd𝑏𝑏b+𝐸𝐸b −𝑝𝑝$DbRdb𝑉𝑉 Total Gain = Actual Profit − Expected Profit

Components of Gain (∗ = assumed, ′ = actual): Interest : 𝑖𝑖•−𝑖𝑖∗ bRd𝑉𝑉+𝐺𝐺b−𝑒𝑒b Expense : 𝑒𝑒b∗−𝑒𝑒b• 1+𝑖𝑖 +𝑞𝑞$DbRd𝐸𝐸b∗−𝐸𝐸b• Mortality : 𝑞𝑞$DbRd∗ −𝑞𝑞$DbRd• 𝑏𝑏b+𝐸𝐸b− 𝑉𝑉b Lapse : 𝑞𝑞$DbRd∫∗ −𝑞𝑞$DbRd∫

...

kCV+𝐸𝐸b∫− 𝑉𝑉b

PEN S IO N MATH EMATIC S INTEREST RATE RISK
PROFIT TESTS
Was this document helpful?

Formula MLC by Coaching Actuaties

Course: Actuarial Science (CS242)

54 Documents
Students shared 54 documents in this course
Was this document helpful?
www.coachingactuaries.com Copyright © 2016 Coaching Actuaries. All Rights Reserved. 1
Raise Your Odds® with Adapt
Exam MLC
SURVIVALDISTRIBUTIONS
ProbabilityFunctions
ActuarialNotations
𝑝𝑝
# $ =Probabilitythat 𝑥𝑥survives𝑡𝑡years
=Pr 𝑇𝑇
$> 𝑡𝑡
= 𝐴𝐴$𝑡𝑡
𝑞𝑞
# $ =Probabilitythat 𝑥𝑥dieswithin𝑡𝑡years
=Pr 𝑇𝑇
$ 𝑡𝑡
= 𝐹𝐹
$𝑡𝑡
𝑝𝑝
# $ + 𝑞𝑞
# $ = 1
𝑞𝑞
#|3 $=Probabilitythat 𝑥𝑥survives𝑡𝑡years
anddieswithinthefollowing𝑢𝑢years
=#𝑝𝑝$⋅3𝑞𝑞$D# 
=#𝑝𝑝$−#D3𝑝𝑝$
=#D3 𝑞𝑞$−#𝑞𝑞$
LifeTableFunctions
𝑑𝑑
G $ = 𝑙𝑙$ 𝑙𝑙$DG
𝑝𝑝
# $ =𝑙𝑙$D#
𝑙𝑙$
𝑞𝑞
# $ =𝑑𝑑
# $
𝑙𝑙$
= 𝑙𝑙$ 𝑙𝑙$D#
𝑙𝑙$
𝑞𝑞
#|3 $=𝑑𝑑
3 $D#
𝑙𝑙$
= 𝑙𝑙$D# 𝑙𝑙$D#D3
𝑙𝑙$
ForceofMortality
𝜇𝜇$D# =𝑓𝑓
$𝑡𝑡
𝐴𝐴$𝑡𝑡
𝜇𝜇$D# = 𝑑𝑑
d𝑡𝑡ln 𝐴𝐴$𝑡𝑡
𝜇𝜇$D# = 𝑑𝑑
d𝑡𝑡ln 𝑝𝑝
# $
𝑓𝑓
$𝑡𝑡 = 𝑝𝑝
# $ 𝜇𝜇$D#
𝑝𝑝
# $ =exp 𝜇𝜇$DMd𝑠𝑠
#
O
𝑞𝑞
# $ =𝑝𝑝
M
.$ 𝜇𝜇$DMd𝑠𝑠
#
O
𝑞𝑞
#|3 $=𝑝𝑝
M
.$ 𝜇𝜇$DMd𝑠𝑠
#D3
#
MortalityLaws
ConstantForceofMortality
𝜇𝜇$= 𝜇𝜇
𝑝𝑝
# $ = 𝑒𝑒RS#
UniformDistribution
𝜇𝜇$=1
𝜔𝜔 𝑥𝑥 , 0 𝑥𝑥 < 𝜔𝜔
𝑝𝑝
# $ =𝜔𝜔 𝑥𝑥 𝑡𝑡
𝜔𝜔 𝑥𝑥 , 0 𝑡𝑡 𝜔𝜔 𝑥𝑥
𝑞𝑞
#|3 $=𝑢𝑢
𝜔𝜔 𝑥𝑥 , 0 𝑡𝑡 + 𝑢𝑢 𝜔𝜔 𝑥𝑥
BetaDistribution
𝜇𝜇$=𝛼𝛼
𝜔𝜔 𝑥𝑥 , 0 𝑥𝑥 < 𝜔𝜔
𝑝𝑝
# $ =𝜔𝜔 𝑥𝑥 𝑡𝑡
𝜔𝜔 𝑥𝑥
Y
, 0 𝑡𝑡 𝜔𝜔 𝑥𝑥
Gompertz’sLaw
𝜇𝜇$= 𝐵𝐵𝑐𝑐$, 𝑐𝑐 > 1
𝑝𝑝
# $ =exp𝐵𝐵𝑐𝑐$𝑐𝑐# 1
ln 𝑐𝑐
Makeham’sLaw
𝜇𝜇$= 𝐴𝐴 + 𝐵𝐵𝑐𝑐$, 𝑐𝑐 > 1
𝑝𝑝
# $ =exp 𝐴𝐴𝑡𝑡 𝐵𝐵𝑐𝑐$𝑐𝑐# 1
ln 𝑐𝑐
Moments
CompleteFutureLifetime
General
𝑒𝑒
$= 𝑝𝑝
# $
]
O
d𝑡𝑡
ConstantForceofMortality
𝑒𝑒
$=1
𝜇𝜇
UniformDistribution
𝑒𝑒
$=𝜔𝜔 𝑥𝑥
2
BetaDistribution
𝑒𝑒
$=𝜔𝜔 𝑥𝑥
𝛼𝛼 + 1
n-yearTemporaryCompleteFutureLifetime
𝑒𝑒
$:G| = 𝑝𝑝
# $
G
O
d𝑡𝑡
UniformDistribution
𝑒𝑒
$:G| = 𝑝𝑝
G $ 𝑛𝑛 + 𝑞𝑞
G $
𝑛𝑛
2
CurtateFutureLifetime
𝑒𝑒$= 𝑘𝑘
]
bcd
𝑞𝑞
b| $=𝑝𝑝
b$
]
bcd
UniformDistribution
𝑒𝑒$= 𝑒𝑒
$ 0.5
n-yearTemporaryCurtateFutureLifetime
𝑒𝑒$:G| = 𝑘𝑘
GRd
bcd
𝑞𝑞
b| $+ 𝑛𝑛 𝑝𝑝
G $ =𝑝𝑝
b$
G
bcd
UniformDistribution
𝑒𝑒$:G| = 𝑒𝑒
$:G| 0.5 𝑞𝑞
G
.$
RecursiveFormulas
𝑒𝑒
$= 𝑒𝑒
$:G| + 𝑝𝑝
G $ 𝑒𝑒
$DG
𝑒𝑒
$:G| = 𝑒𝑒
$:f| + 𝑝𝑝
f $ 𝑒𝑒
$Df:GRf|, 𝑚𝑚 < 𝑛𝑛
𝑒𝑒$= 𝑒𝑒$:G| + 𝑝𝑝
G $ 𝑒𝑒$DG = 𝑒𝑒$:GRd| + 𝑝𝑝
G $ 1 + 𝑒𝑒$DG
𝑒𝑒$= 𝑝𝑝$1 + 𝑒𝑒$Dd
𝑒𝑒$:G| = 𝑒𝑒$:f| + 𝑝𝑝
f $ 𝑒𝑒$Df:GRf|, 𝑚𝑚 < 𝑛𝑛
𝑒𝑒$:G| = 𝑒𝑒$:fRd| + 𝑝𝑝
f $ 1 + 𝑒𝑒$Df:GRf| , 𝑚𝑚 < 𝑛𝑛
𝑒𝑒$:G| = 𝑝𝑝$1 + 𝑒𝑒$Dd:GRd|
FractionalAges
UDD 0 𝑠𝑠 + 𝑡𝑡 1
𝑙𝑙$DM = 1 𝑠𝑠 𝑙𝑙$+ 𝑠𝑠 𝑙𝑙$Dd
𝑞𝑞
M $ = 𝑠𝑠 𝑞𝑞$
𝑞𝑞
M $D# =𝑠𝑠 𝑞𝑞$
1 𝑡𝑡 𝑞𝑞$
𝜇𝜇$DM =𝑞𝑞$
1 𝑠𝑠 𝑞𝑞$
𝑞𝑞$= 𝑝𝑝
M $ 𝜇𝜇$DM
ConstantForceofMortality 0 𝑠𝑠 + 𝑡𝑡 1
𝑙𝑙$DM = 𝑙𝑙$dRM 𝑙𝑙$Dd M
𝑝𝑝
M $ = 𝑝𝑝
M $D# =𝑝𝑝$M
𝜇𝜇$DM = ln 𝑝𝑝$
Selectandultimatemortality
Apersonis‘selected’attheagewhenthepolicyis
firstpurchased.
Selectmortalityiswrittenas𝑞𝑞$ D# where𝑥𝑥isthe
‘selected’ age and 𝑡𝑡is the number of years after
selection.
After a certain number of years of‘select period’,
mortalityiscalledthe‘ultimate’mortality.
𝑞𝑞$ D# = 𝑞𝑞$D#.
Readthe2-yearselectandultimatemortalitytable
from the left to the right and then continue
downwards.
𝑥𝑥
𝑞𝑞$
𝑞𝑞$ Dd
𝑞𝑞$ Dh
𝑥𝑥 + 2
30
32
31
33
32
34
33
35
INSURANCE
LevelAnnualInsurance
EPV
WholeLife
Discrete
𝐴𝐴$= 𝑣𝑣bDd
]
bcO
𝑞𝑞
b| $
Continuous
𝐴𝐴$=𝑣𝑣#
]
O
𝑝𝑝
# $ 𝜇𝜇$D# d𝑡𝑡
TermLife
Discrete
𝐴𝐴$:G|
d= 𝐴𝐴$ 𝐸𝐸
G $ 𝐴𝐴$DG
Continuous
𝐴𝐴$∶G|
d = 𝐴𝐴$ 𝐸𝐸
G $ 𝐴𝐴$DG
Discrete
𝐴𝐴
G| $= 𝐴𝐴$ 𝐴𝐴$:G|
d= 𝐸𝐸
G $ 𝐴𝐴$DG
Continuous
𝐴𝐴
G| $= 𝐴𝐴$ 𝐴𝐴$∶G|
d = 𝐸𝐸
G $ 𝐴𝐴$DG
Discrete
𝐴𝐴$:G|
d = 𝐸𝐸
G $ = 𝑣𝑣G𝑝𝑝
G $
Continuous
N/A
Discrete
𝐴𝐴$:G|
 = 𝐴𝐴$:G|
d+ 𝐸𝐸
G $
Continuous
𝐴𝐴$:G|
 = 𝐴𝐴$:G|
d + 𝐸𝐸
G $
EPVunderConstantForceofMortality
Discrete
Continuous
𝐴𝐴$=𝑞𝑞
𝑞𝑞 + 𝑖𝑖
𝐴𝐴$=𝜇𝜇
𝜇𝜇 + 𝛿𝛿
𝐴𝐴$:G|
d=𝑞𝑞
𝑞𝑞 + 𝑖𝑖 1 𝐸𝐸
G $
𝐴𝐴$:G|
d =𝜇𝜇
𝜇𝜇 + 𝛿𝛿 1 𝐸𝐸
G $
𝐴𝐴
G| $=𝑞𝑞
𝑞𝑞 + 𝑖𝑖 𝐸𝐸
G $
𝐴𝐴
G| $=𝜇𝜇
𝜇𝜇 + 𝛿𝛿 𝐸𝐸
G $
𝐸𝐸
G $ = 𝑣𝑣G𝑝𝑝G
𝐸𝐸
G $ = 𝑒𝑒R(SDo)G
EPVunderUniformDistribution
Discrete
Continuous
𝐴𝐴$=𝑎𝑎rR$|
𝜔𝜔 𝑥𝑥
𝐴𝐴$=𝑎𝑎rR$|
𝜔𝜔 𝑥𝑥
𝐴𝐴$:G|
d=𝑎𝑎G|
𝜔𝜔 𝑥𝑥
𝐴𝐴$:G|
d =𝑎𝑎G|
𝜔𝜔 𝑥𝑥
𝐸𝐸
G $ = 𝑣𝑣G𝜔𝜔 𝑥𝑥 𝑛𝑛
𝜔𝜔 𝑥𝑥
𝐸𝐸
G $ = 𝑣𝑣G𝜔𝜔 𝑥𝑥 𝑛𝑛
𝜔𝜔 𝑥𝑥
SURVIVAL DISTRIBUTIONS
INSURANCE