Skip to document

Chapter 04

For the whole chapter 4 topic in science.
Course

Secondary education (bio sci)

609 Documents
Students shared 609 documents in this course
Academic year: 2020/2021
Uploaded by:
0followers
15Uploads
81upvotes

Comments

Please sign in or register to post comments.

Preview text

84

5 ..

####### FOCUSonCONCEPTS

, arth’ssurfaceisconstantlychanging,movedtolower elevationsbygravity,andcarriedawaybywater,wind,orice’sphysical landscapeissculptured-endingprocess, weatheringandmasswasting,andwhydoesthetypeandrateof weatheringvaryfromplacetoplace?Whatmechanismsacttomoveweathereddebrisdownslope? Soil,animportantproductoftheweatheringprocessandavitalresource,isalsoexamined.

Toassistyouinlearningtheimportantconceptsinthischapter,focusonthefollowingquestions: <23 WhatareEarth'sexternalprocesses,andwhatrolesdotheyplayintherockcycle? -@;1;?1 Whatarethetwomaincategoriesofweathering?Inwhatwaysaretheydifferent? Whatfactorsdeterminetherateatwhichrockweathers? <55; Whatissoil?Whatarethefactorsthatcontrolsoilformation? <1:-‘: Whatfactorsinfluencenaturalratesofsoilerosion?Whatimpacthavehumanshad? (5511 Howisweatheringrelatedtotheformationoforedeposits? #1? Whatismasswastingandwhatroledoesitplayinthedevelopmentofvalleys? 1 Whatarethecontrolsandtriggersofmasswasting? l Whatcriteriaareusedtodivideanddescribethevarioustypesofmasswasting? Whatarethegeneralcharacteristicsofslump,rockslide,debrisflow,earthflow,andcreep?

Earth’s External Processes

0 SculpturingEarth'sSurface

fir"->'":nZ-afin:ITI 9 WeatheringandSoil

Weathering, masswasting,anderosionare calledexternal processesbecausetheyoccuratornearEarth’ssurfaceandare poweredbyenergyfromtheSun part of the rock cycle because they are responsible for transformingsolidrockintosediment. Tothecasualobserver,thefaceofEarthmayappeartobe withoutchange,unaffectedbytime, 200 yearsagomost peoplebelievedthatmountains,lakes,anddesertswereperma- nentfeaturesofanEarththatwasthoughttobenomorethana fewthousandyearsold yearsoldandthatmountainseventuallysuccumbtoweathering anderosion,lakesfillwithsedimentoraredrainedbystreams, anddesertscomeandgowithchangesinclimate. Earthisadynamicbody’ssurfaceare graduallyelevatedbymountainbuildingandvolcanicactivity. TheseinternalprocessesderivetheirenergyfromEarth’sinterior. Meanwhile,opposingexternalprocessesarecontinuallybreak- ingrock apart andmovingthe debris tolower elevations r;1; ~<-5. ).Thelatterprocessesinclude:

  1. Weathering—thephysicalbreakdown(disintegration) andchemicalalteration(decomposition)ofrocksator nearEarth’ssurface.

  2. Masswasting—thetransferofrockandsoildownslope undertheinfluenceofgravity.

  3. Erosion—thephysicalremovalofmaterialbymobile agentssuchaswater,wind,orice. T Wefirstturnourattentiontotheprocessofweatheringandthe productsgeneratedbythisactivity,weatheringcannot beeasilyseparatedfromtheothertwoprocessesbecause,as weatheringbreaksrocksapart,itfacilitatesthemovementofrock debrisbymasswastinganderosion,thetransportof materialbymasswastinganderosionfurtherdisintegratesand decomposestherock.

####### CONCEPTcnscx 4.

QListexamplesofEarth'sexternalandinternalprocesses. QFromwheredotheseprocessesderivetheirenergy?

Weathering

SculpturingEarth'sSurface

‘gm"'23:1-121",nr./fH"! FWeatheringandSoil

Weatheringgoesonallaroundus,-butitseemslikesuchaslow andsubtleprocessthatitiseasytounderestimateitsimportance. Yet,itisworthrememberingthatweatheringisabasicpartofthe rockcycleandthusakeyprocessintheEarthsystem isalsoimportanttohumans—eventothoseofuswhoarenot studyinggeology, manyofthelife-sustaining mineralsandelementsfoundinsoil,andultimatelyinthefoodwe

86 CHAPTER 4 Weathering,Soil,andMassWasting

Weatheringoccurswhenrockismechanicallyfragmented (disintegrated) andfor chemicallyaltered (decomposed). Mechanicalweatheringisaccomplishedbyphysicalforcesthat breakrockintosmallerandsmallerpieceswithoutchanging therock"smineralcomposition achemicaltransformationofrockintooneormorenewcom- pounds paper andsmallerpieces,whereasdecompositionoccurswhenthe paperissetafireandburned. Inthefollowingsectionswediscussthevariousmodesof mechanicalandchemicalweathering thesetwocategoriesseparately,keepinmindthatmechanical andchemicalweatheringprocessesusuallyworksimultaneously innatureandreinforceeachother.

CONCEPTcnscx4.

QWhatarethetwobasiccategoriesofweathering? QHowdotheproductsofeachcategoryofweatheringdiffer?

Mechanical Weathering

' SculpturingEarth'sSurface

mmQ 223 /NIrn }WeatheringandSoil

Whenarockundergoesmechanicalweathering,itisbrokeninto smallerandsmallerpieces,eachretainingthecharacteristicsofthe originalmaterial largeone. showsthatbreakingarockintosmallerpieces increasesthesurfaceareaavailableforchemicalattack,by breakingrocksintosmallerpieces,mechanicalweatheringincreases theamountofsurfaceareaavailableforchemicalweathering.

Innature,fourphysicalprocessesareespeciallyimportantin breakingrocksintosmallerfragments:frostwedging,saltcrystal growth,expansionresultingfromunloading(sheeting),andbio- logicalactivity,althoughtheworkoferosionalagents suchaswaves,wind,glacialice,andrunningwaterisusuallycon- sideredseparatelyfrommechanicalweathering,itisneverthe- lessimportant,they relentlesslydisintegratethesematerials.

FrostWedging Ifyouleaveaglassbottleofwaterinthefreezerabittoolong, youwillfindthebottlefractured waterhastheuniquepropertyofexpandingabout 9 percent uponfreezing exposedwaterpipesruptureduringfrigidweather alsoexpectthissameprocesstofracturerocksinnature is,infact,thebasisforthetraditionalexplanationoffrost wedging,the freezingwaterenlargesthecracksandangularfragmentsare eventuallyproduced(‘.=.~‘-‘.i=;.nr:-arsea). Formanyyears,theconventionalwisdomwasthatmostfrost wedgingoccurredinthemannerjustdescribed,how- ever,researchhasshownthatfrostwedgingcanalsooccurinadif- ferentway, theyexpandorfrostheavedue tothegrowthoficelenses massesoficegrowlargerbecausetheyaresuppliedwithwater migratingfromunfrozenareasasthinliquidfilms accumulatesandfreezes,thesoilisheavedupward processoccurswithinthecracksandporespacesofrocks oficegrowlargerastheyattractliquidwaterfromsurrounding pores, causingittofracture.

5BernardHallet,“WhyDoFreezingRocksBreak?”Science 314 (November2006):1092-1099.

Chemicalweatheringcanoccuronlytothoseportionsofarockthatareexposedtothe elements,therebyincreasing thesurfaceareaavailableforchemicalattack. 1‘= ,?"'TT<€>‘. ‘:3?’ -ll 1 .5-E?‘.-..-:-'1'-,;‘-7»-,'a_’=-"f"-.--'2.".;.;.T2132’-,‘'" r 1 “ ''1- ‘- '‘- 1 _,2--=;.-ta‘-‘=’=T1:-'-‘3i';TE!2'i-"‘i.";€"=<."".7*-‘§5"=1E"=e'-"rise.-z;;'I\fl1e§,;.-'-'-:: 5 :::;=-1.’".z,1; .';=r-*=-—-=:''-——_-en?452.»--e.*2:;;;;;=s:a;:»=-re-,'z<;;=ax-__;=-:=- -.--;-€E1E':-F='-~ .#1:;—‘-1s:=“.1;=,__>:.~--‘';r';,= 2

$2_..-"_1.-T-$3 2 __‘--5,tY’ <1"-T“‘.1'._-»-H, ,-“hi t,'|;&'.-'5. _,=I.._l-:3,¢;1.s--.---ie,7;-,--;:171-:§_rh.-__,,£.:li 1: 3,

iii|\aM.‘|‘|Iv|)'i“l,iv‘_I-‘VPll‘IU.‘fl,‘...'.1,|'\J"F-,"Ln-|,|:'.an‘. -ail1' '1.'!\‘I=..,’-'-.3'1*.'--'';.':Q‘;~';-J-*.,' 'f,'-,j:.g,‘:5_:____ 5 ‘"5;-;:;==1-‘.352;“.- .--.,.I‘_z___‘:>. I__ .‘_,...:1‘-2;.-lg‘; ;..

I ~ -< 5'-*7i"¥. }--if.-3,_""I'.",.’5&quot;;;=12‘? ’ ' I

P-tr.:,“.%‘-Fig-sE- ..ii Irso. ;‘ 7 —-¢. 5 >"-',1[;;:_- *l..' E-Tl~55""‘.“-f_;f-€:l.¥§-151?"»J.:""'r'-liai--l?f:§:Y‘.':‘ ~,T1*-‘if;_- _ ';5-'"-5’?-éi IN 4 I-|“l‘l

.3‘ -L

/36'/9¢?S’¢.‘P/1'7'J3;/7;?6,6‘

.: 2 - _-e.—-»'==:-=---..- ..==~-*"*5‘-: -.;.- 1.-_s.r ,,, :--ea-:..-Q-"<e'‘.“‘T"-''-t’Si'l_i'§!"§‘1%=1=;;}-5‘.=:~-.:-,“"1;‘:-'3‘%E;'l'4-1-‘Zwt.-re‘P-= '‘Ig=.=.-°.I=-are-i'=I'-’"”'*___'

MechanicalWeathering 87

Frostwedging T“"N .-=¢P“**i

'-.--'--o-1-|a.&-‘

V1->,, .... vv .e“;,__.¢.-'.:.'.. xi‘.._b..,.-1'.‘.?.’4‘55-‘4":-_.:..-,.=.>_j. '-

  • ,@=''€=2%rwII5_¢r<'-.'==-it‘-PI-IL.‘‘:-

t Patches 'r.. .1-I‘,at,1-J

7*?‘I. 7.".'2‘1‘:‘4.‘,'

;Talusslgfe - f{-‘ >‘\ --:€’i~?3..,“*-2.; ;?‘?;§ll?=9€@ 0f'i!7i"i1;i;5i.-‘» 7 all/:rarlg, "°"-‘K. .- |,-"y.,,**.;=',l‘..'vV‘*$¢—:;‘-= 1 - '.»’--—,,--'t;ee.=j1=".1'2 .debt!‘. .1%.. .'“3;2il__<( /lax»;ases P ;-;- 3 "'6"-=<'v.;“.1-1'1?‘-.~’1-,"'::;2I-‘-.'-‘=.»‘."°.'.<-J1’;hi",’!‘'---''- .<;-eas.,-.$;'!'§’—‘é'=-1 1 ''7‘3?-,;i".-.=';-§':si*.%a;--::-t‘-;I»_-'§;c‘3_:.t§-‘Lkg:-rf-3ft“-5'"1‘ .5"' 1 - -'. =-.- 5--1:“Wk_-§_;$€5:.-,114?’?-“'.'‘;‘.-:-»-;'-1.=,;i;‘;-'.:.’_':''"-‘'=‘"-;‘‘"=----its'.;-;.)'‘-r’...,.-‘_A;‘-5‘»’¥-:1’,T1-."..*Y?*’>“‘1T3{i.€1i=(>5'=‘$’§Z{?'51‘£f-'.':'.=§:"§¥£-L-~.4.?'4',Ej"Y'*‘-é-'1‘-r_--=-ET-£;5—3'§E5:.?z=;;-’=5;";;<; 1’',£‘J.'---".»-I»"1""at5:“"<';§.1?"-‘I-‘.-'-»lf‘1-,-'.P..'t;.:1?1;;-‘I-=-'e'-.;:'%- 1 '1.--’--=-.-"='.-1-*1'..-i-.;-.-.-.-=.<...=:.:;:j;‘;E‘=-r-<-51>‘*1‘?Ti"-""-:.=-.-,2--'.-Si-'=;-:1=»?.=i'.-2'-?:%-j'=_>f‘£X"'7-:'

Geologists Sketch

>_¢;.

_ (riff,,"Q --Iofsnow. _ ,5‘ K i.'§.§.;-‘5. ill: -r an. --. \ ‘ 1 -< ‘t ", \‘ii‘QF1?T::1‘.-rj.‘F35;.5;,‘-.’ " '1.‘ *-3'.‘--'L3,‘;-; 1%‘. ,, Pr-:!=l-= .1 ifif5'rtbT¢@i‘~l¢dfiifil P; - :1.» ~ ' 2. "“‘ Jeffif‘.in 1 itf l- .ed’l”e'}W‘-Y.. I , j5?bed$—-i)-‘I' f_ { ‘gig,--T17.:13‘;Qt!-‘-.'2'f-'~l§lr'I3-‘i1‘L 1---"=-..- F

;,,;,-.-r C

-=‘l .:2." is3; in " .‘ - ‘P.» --".'‘i’:'-Af§~»-1--'.""- at --‘I-'. ‘- <1‘:.:z,_ --Q-.:"‘L_&quot;‘;:‘I- _’1,.:~.--' ‘r .-" 5’:,_'.'f_‘-1‘I_'..r»:.-'::-

z-'~ » 1 s f. .I""‘--1.,-_.-I ‘fii‘J, H w-T’ 'L."-.."~-. 0 ~ 1. 4'-in-.,9-'5?'_4 4, '.'":\4\ A;'.Ii":-‘-._a.‘-.-Q5“-7§' -rela-.-‘.‘____’ T._i1-'‘.LN?-‘}- %$'%-"=.‘.»--'-‘F.-r,.

'f"v"'

-1.

Fa m3 “1-. _.:T-:

i*';i‘.<xi:;-Traditionaldepictionoffrostwedging,itexpands,exertingaforcegreatenoughtobreakrock frostwedgingoccursinasettingsuchasthis,thebrokenrockfragmentsfallto thebaseofthecliffandcreateacone-shaped accumulationknownasatalusslope.(PhotobyTomBean/Corbis)

SaltCrystalGrowth

Anotherexpansiveforcethatcansplitrocksiscreatedbythe growthofsaltcrystals commonsettingsforthisprocess breakingwavesorsaltygroundwaterpenetratescrevicesandpore spacesinrock,saltcrystalsform crystalsgraduallygrowlarger,theyweakentherockbypushing apartthesurroundinggrainsorenlargingtinycracks. Thissameprocesscanalsocontributetocrumblingroadways wheresaltisspreadtomeltsnowandiceinwinter- solvesinwaterandseepsintocracksthatquitelikelyoriginated fromfrostaction,thegrowthofsalt crystalsfurtherbreaksthepavement.

Sheeting

Whenlargemassesofigneousrock,particularlythosecomposed ofgranite,areexposedbyerosion,concentricslabsbegintobreak loose-likelayersiscalled sheetingandprobablytakesplaceinresponsetothegreat reductioninpressurethatoccurswhentheoverlyingrockis erodedaway,theouterlayers expandmorethantherockbelowandthusseparatefromtherock body(i‘i'.;j'-§§'.lY-=.‘:i‘-.- Ia).Continuedweatheringeventuallycauses theslabstoseparateandspalloff,creatingexfoliationdomes

(ex=off,folium=leaf). Excellent examples of exfoliation domesincludeStoneMountaininGeorgiaandHalfDomein YosemiteNationalPark(Figure4). Deepundergroundminingprovidesuswithanotherexample ofhowrocksbehaveoncetheconfiningpressureisremoved. Largerockslabssometimesexplodeoffthewallsofnewlycut minetunnelsbecauseoftheabruptlyreducedpressure ofthistype,plusthefactthatfracturingoccursparalleltothefloor ofaquarrywhenlargeblocksofrockareremoved,stronglysup- portstheprocessofunloadingasthecauseofsheeting. Althoughmanyfracturesarecreatedbyexpansion,others areproducedbycontractionasigneousmaterialscool(see Figure9,p,andstillothersbytectonicforcesduring mountainbuilding formadefinitepatternandarecalledjoints(seeFigure4,p. 91 andFigure10,p).Iointsareimportantrockstructures thatallowwatertopenetratedeeplyandstarttheprocessof weatheringlongbeforetherockisexposed.

BiologicalActivity Weatheringisalsoaccomplishedbytheactivitiesoforganisms, includingplants,burrowinganimals,andhumans searchofmineralsandwatergrowintofractures,andastheroots grow,theywedgetherockapart its).Burrowinganimals furtherbreakdowntherockbymovingfreshmaterialtothe

ChemicalWeathering 89

attack contributestomechanicalweathering theouterportionsofsomerocks,which,inturn,makesthem moresusceptibletobeingbrokenbymechanicalweathering processes. Chemicalweatheringinvolvesthecomplexprocessesthat altertheinternalstructuresofmineralsbyremovingand/or addingelements,theoriginalrock decomposesintosubstancesthatarestableinthesurfaceenvi- ronment,theproductsofchemicalweatheringwill remainessentiallyunchangedaslongastheyremaininanenvi- ronmentsimilartotheoneinwhichtheyformed.

WaterandCarbonicAcid

Waterisbyfarthemostimportantagentofchemicalweathering. Althoughpurewaterisnonreactive,asmallamountofdissolved materialisgenerallyallthatisneededtoactivateit dissolvedinwaterwilloxidizesomematerials,when anironnailisfoundinmoistsoil,itwillhaveacoatingofrust (ironoxide),andifthetimeofexposurehasbeenlong,thenailwill besoweakthatitcanbebrokenaseasilyasatoothpick rockscontainingiron-richmineralsoxidize,ayellowtoreddish- brownrustwillappearonthesurface Carbondioxide(CO2)dissolvedinwater(H20)formscar- bonicacid(HZCO3),thesameweakacidproducedwhensoft drinksarecarbonated itfalls throughthe atmosphere, and additionalamounts releasedbydecayingorganicmatterareacquiredasthewater percolatesthroughthesoil veryreactive hydrogenion(H+) andthebicarbonate ion (HCOQ). Acidssuchascarbonicacidreadilydecomposemanyrocks andproducecertainproductsthatarewatersoluble, themineralcalciteCaCO3,whichcomposesthecommonbuild- ingstonesmarbleandlimestone,iseasilyattackedbyevena weaklyacidicsolution.

‘f Ironreactswithoxygentoformironoxide,asseen O11theserustedbarrels.(PhotobyStevenRobertson/istockphoto)

H

P” ._-.-and

HowGraniteWeathers Toillustratehowrockchemicallyweatherswhenattackedby carbonicacid,wenowconsidertheweatheringofgranite,an abundantcontinentalrock quartzandpotassiumfeldspar feldsparcomponentofgranitetakesplaceasfollows:

2KAlSi3O8+2(H++H003“)+H20—> potassiumfeldspar carbonicacid water

Ai,si,o5(oi-1),, +2i<++ 2 Hco;+ 4 sio, claymineral potassium bicarbonite silica ion ion insolution

Inthisreaction,thehydrogenions(H+)attackandreplacepotas- siumions(IC)inthefeldsparstructure,therebydisruptingthe crystallinenetwork,thepotassiumisavailableas anutrientforplantsorbecomesthesolublesaltpotassiumbicar- bonate(KHCO3),whichmaybeincorporatedintootherminerals orcarriedtotheoceanindissolvedformbystreams. Themostabundantproductsofthechemicalbreakdown offeldsparareresidualclayminerals productofweatheringandareverystableundersurfacecon- ditions,claymineralsmakeupahighpercent- ageoftheinorganicmaterialinsoils,themost abundantsedimentaryrock,shale,containsahighproportion ofclayminerals. Inadditiontotheformationofclaymineralsduringthisreac- tion,somesilicaisremovedfromthefeldsparstructureandis carriedawaybygroundwater(waterbeneathEarth’ssurface).This dissolvedsilicawilleventuallyprecipitatetoproducenodulesof chertorflint,fillintheporespacesbetweensedimentgrains,or becarriedtotheocean,wheremicroscopicanimalswillremove ittobuildhardsilicashells. Tosummarize,theweatheringofpotassiumfeldspargener- atesaresidualclaymineral,asolublesalt(potassiumbicarbon- ate),andsomesilicathatentersintosolution. Quartz,theothermaincomponentofgranite,isveifyresistant tochemicalweathering;itremainssubstantiallyunalteredwhen attackedbyweaklyacidicsolutions,whengranite weathers,thefeldsparcrystalsdullandslowlyturntoclay,releas- ingtheonceinterlockedquartzgrains,whichstillretaintheir fresh,glassyappearance soil,muchistransportedtotheseaortoothersitesofdeposition, whereitbecomesthemainconstituentofsuchfeaturesassandy beachesandsanddunes thesedimentaryrocksandstone.

WeatheringofSilicateMinerals Table4 commonsilicateminerals makeupmostofEarth’scrustandthatthesemineralsare composedessentiallyofonlyeightelements weathered,silicatemineralsyieldsodium,calcium,potassium, andmagnesiumions,whichformsolubleproductsthatmaybe

__90 CHAPTER 4 Weathering,Soil,andMassWasting

1-B0x4...-

='I1'?‘1u:1.-=5i'1‘-. 1 >"iiI'j.-]'' I.-*’=l"_"j'-i%'E‘-1,=-;''.."E--1‘i:“'j? 17 F;r 11 5. i

  • i'-il__.'i___is~-*- =Ii "1,,. i1___1'5: '.____-'-i.:11; 2 = ,‘ i

####### TheOldMan

####### oftheMountain

TheOldManoftheMountain,alsoknown asTheGreatStoneFaceorsimplyThePro- file,wasoneofNewHampshire's(the GraniteState)best-knownandmost enduringsymbols(Figure4).Begin- ningin1945,itappearedatthecenterof theofficialstateemblem(seeinset betweenphotos).Itwasanaturalrockfor- mationsculptedfromConwayRedGranite that,whenviewedfromtheproperloca- tion,gavetheappearanceofanoldman. Eachyearhundredsofthousandsofpeople traveledtoviewtheOldMan,whichpro- trudedfromhighonCannonMountain, 360 meters(1,200feet)aboveProfileLake innorthernNewHampshire'sFranconia NotchStatePark. OnSaturdaymorning,May3,2003,the peopleofNewHampshirelearnedthatthe famouslandmarkhadsuccumbedtonature

TABLE4 ProductsofWeathering ResidualProducts MaterialinSolution Silica Silica,1<+jN;.,{oii+‘ C I siiioe,ca“,ha? C

Mineral Quartz Quartzgrains Feldspars I Clayminerals Amphibole Clayminerals Ironoxides Olivine Ironoxides Silica,Mg“

removedbygroundwater- gen,producingrelativelyinsolubleironoxides,whichgivesoila reddish-brownoryellowishcolor remainingelements—aluminum,silicon,andoxygen—joinwith watertoproduceresidualclayminerals,eventhehighly insolubleclaymineralsareveryslowlyremovedbysubsurfacewater.

SpheroidalWeathering Inadditiontoalteringtheinternalstructureofminerals,chemical weatheringcausesphysicalchangesaswell,when angularrockmassesarechemicallyweatheredaswaterenters alongjoints,theytendtotakeonasphericalshape cornersandedgesoftheangularblocksbecomemorerounded. Thecornersareattackedmostreadilybecauseoftheirgreater surfacearea,ascomparedtotheedgesandfaces, calledspheroidalweathering,givestheweatheredrockamore roundedorsphericalshape

gtl

STATEtr aaiile-

####### 0,

FIGURE4,highabove FranconiaNotchinNewHampshire'sWhiteMountains,asitappearedpriortoMay3, 2003 thefamousgraniteoutcropafteritcollapsedonMay3,2003 sculptedtheOldManultimatelydestroyedit.(AssociatedPressphotosbyJimCole)

andcollapsed(Figure4).Thecol- processesthatcreateditinthefirstplace. lapseendeddecadesofeffortstoprotectthe Ultimately,frostwedgingandotherweath- statesymbolfromthesamenatural eringprocessesprevailed.

####### CONCEPTcnrzcx4.

QHowiscarbonicacidformedinnature? QWhatproductsresultwhencarbonicacidreactswithpotassium feldspar? QExplainhowtheroundedbouldersinFigure4 formed.

Rates of Weathering

SculpturingEarth'sSurface

fin->"'11Z-iHI! PWeatheringandSoil Severalfactorsinfluencethetypeandrateofrockweathering havealreadyseenhowmechanicalweatheringaffectstherateof weathering,theamountof surfaceareaexposedtochemicalweatheringisincreased importantfactorsexaminedhereincluderockcharacteristicsand climate.

RockCharacteristics Rockcharacteristicsencompassallofthechemicaltraitsofrocks, includingmineralcompositionandsolubility,any physicalfeatures,suchasjoints(cracks), canbeimportant becausetheyinfluencetheabilityofwatertopenetraterock.

92 CHAPTER 4 Weathering,Soil,andMassWasting

iii;(iii 0 Asaconsequenceofburninglargequantitiesofcoal andpetroleum,morethan 27 milliontonsofsulfurandnitrogen oxidesarereleasedintotheatmosphereeachyearintheUnited States,someofthese pollutantsareconvertedintoacidsthatthenfalltoEarth'ssurfaceas rainorsnow,acidrain acceleratesthechemicalweatheringofstonemonumentsand structures,includingthisbuildingfacadeinLeipzig,Germany. (PhotobyDougPlumrner/PhotoResearchers,Inc.)

Differentialweatheringandsubsequenterosionareresponsible forcreatingmanyunusualandsometimesspectacularrockfor- mationsandlandforms.

####### CONCEPTcnncx4. 5

QWhatrockcharacteristiccausedtheheadstonesinFigure4. weathersodifferently? QHowdoesclimateinfluenceweathering?

i~"iۤt-i.';i';tDifferentialweatheringisillustratedbythesesculpted rockpinnaclesinArizona'sMonumentValley.(Photobyjovannigl Shutterstock)

Soil

Soilcoversmostlandsurfaces,itisone ofourmostindispensableresources,likeairandwater,soil istakenforgrantedbymanyofus thisvitallayerinperspective. Science,inrecentyears,hasfocusedmoreandmoreon the Earthasaplanet,onethatforallweknowisunique—where athinblanketofair,athinnerfilmofwater,andthethinnest veneerofsoilcombinetosupportaweboflifeofwondrous diversityincontinuouschange/ Soilhasaccuratelybeencalled“thebridgebetweenlifeand theinanimateworld.”Alllife—theentirebiosphere—owesitsexis- tencetoadozenorsoelementsthatmustultimatelycomefrom Earth’scrust, plantscarryouttheintermediaryroleofassimilatingtheneces- saryelementsandmakingthemavailabletoanimals,including humans.

AnInterfaceintheEarthSystem WhenEarthisviewedasasystem,soilisreferredtoasan interface—acommonboundarywheredifferentpartsofasystem interact wherethesolidEarth,theatmosphere,thehydrosphere,andthe biospheremeet complexenvironmentalinteractionsamongdifferentpartsofthe Earthsystem,soilgraduallyevolvestoastateof equilibrium,orbalance,withtheenvironment andsensitivetoalmosteveryaspectofitssurroundings, whenenvironmentalchangesoccur—inclimate,vegetativecover, oranimal(includinghuman)activity—thesoilresponds suchchangeproducesagradualalterationofsoilcharacteristics untilanewbalanceisreached thelandsurface,soilfunctionsasafundamentalinterface, providinganexcellentexampleoftheintegrationamongmany partsoftheEarthsystem.

WhatIsSoil? Withfewexceptions,Earth'slandsurfaceiscoveredbyregolith (rhegos=blanket,lithos=stone),thelayerofrockandmineral fragmentsproducedbyweathering materialsoil,butsoilismorethananaccumulationofweath- ereddebris matter,water,andair—thatportionoftheregoliththatsup- portsthegrowthofplants majorcomponentsinsoilvary,thesamefourcomponents alwaysarepresenttosomeextent(Figure4).Aboutonehalf ofthetotalvolumeofagood-qualitysurfacesoilisamixture ofdisintegratedanddecomposedrock(mineralmatter)and humus,thedecayedremainsofanimalandplantlife(organic matter).Theremaininghalfconsistsofporespacesamongthe solidparticleswhereairandwatercirculate.

BlackEddy,"AFragileSeamofDarkBlueLight,"inProceedingsoftheGlobalChange ResearchForum.U,1993,p.

ControlsofSoilFormation 93

25%air

p 45% ; '-W§f§iti'=-' matters‘. 3’_A'

5%organicmatter/

1%. granted,butitcontainsagreatdealoflife. Moreover,thiscomplexmediumsupportsnearlyallplantlife,which inturnsupportsanimallife (byvolume)ofasoilingoodconditionforplantgrowth percentagesvary,eachsoiliscomposedofmineralandorganic matter,water,andair.(PhotobyColinMolyneux/GettyImages)

Althoughthemineralportionofthesoflisusuallymuchgreater thantheorganicportion,humusisanessentialcomponent additiontobeinganimportantsourceofplantnutrients,humus enhancesthesoil’sabilitytoretainwater airandwatertoliveandgrow,theportionofthesoflconsistingof porespacesthatallowforthecirculationofthesefluidsisasvitalas thesolidsoflconstituents. Soilwaterisfarfrom“pure”water;instead,itisacomplex solutioncontainingmanysolublenutrients providesthenecessarymoistureforthechemicalreactionsthat sustainlife;italsosuppliesplantswithnutrientsinaformthey canuse isthesourceofnecessaryoxygenandcarbondioxideformost microorganismsandplantsthatliveinthesoil.

SoilTextureandStructure

Mostsoilsarefarfromuniformandcontainparticlesofdifferent sizes. Textureisaverybasicsoilpropertybecauseitstronglyinfluences thesoil’sabilitytoretainandtransmitwaterandair,bothofwhich areessentialtoplantgrowth dryoutquickly,theporespacesofclay-rich soilsmaybesosmallthattheyinhibitdrainage,andlong-lasting puddlesresult,whentheclayandsiltcontentisvery high,plantrootsmayhavedifficultypenetratingthesoil. Becausesoilsrarelyconsistofparticlesofonlyonesize, texturalcategorieshavebeenestablishedbasedon thevarying proportionsofclay,silt, andsand classesusedbytheU ii’i;;mi:i2:- Forexample,point/ilonthistriangulardiagram(left center)representsasoilcomposedof 10 percentsilt, 40 per- centclay,and 50 percentsand.

v

/0G/-O8/71‘°’<'=‘yS

0)< 5 ‘$00;/ 960 \\‘.

-\)-

o, Percentsand j»l_1‘}€-’"L;T}'%l,l{i.'iZ}iThetextureofanysoilcanberepresentedbyapoint onthissoil-texturediagram factorsusedtoestimateagriculturalpotentialandengineering characteristics.(AfterU)

Thesoilscalledloam,whichoccupythecentralportionofthe diagram,arethoseinwhichnosingleparticlesizepredomi- natesovertheothertwo plantlifebecausetheygenerallyhavebettermoisturecharac- teristicsandnutrientstorageabilitythandosoilscomposed predominantlyofclayorcoarsesand. Soilparticlesareseldomcompletelyindependentofone another,theyusuallyformclumpscalledpedsthatgive soilsaparticularstructure- nized:platy,prismatic,blocky,andspheroidal importantbecauseitinfluencestheeaseofasoil’scultivationas wellasthesusceptibilityofasofltoerosion,soflstruc- tureaffectstheporosityandpermeabilityofsoil(i.,theeasewith whichwatercanpenetrate).Thisinturninfluencesthemove- mentofnutrientstoplantroots- allyallowformoderatewaterinfiltration,whereasplatyand spheroidalstructuresarecharacterizedbyslowerinfiltrationrates.

####### concsprCHECK 4. 6

QWhyissoilconsideredaninterfaceintheEarthsystem? QHowisregolithdifferentfromsoil? QWhyistextureanimportantsoilproperty? QUsingthesoiltexturediagram(Figure4),namethesoil thatconsistsof 60 percentsand, 30 percentsilt,and 10 percentclay.

Controls ofSoil Formation

Soilistheproductofthecomplexinterplayofseveralfactors mostimportantoftheseareparentmaterial,time,climate,plants andanimals,andtopography interdependent,theirrolesareexaminedseparately.

ControlsofSoilFormation 95

rlili

-----—-=-..-,-.-.-.-----....,,,,_-uuiu.-1-~ r.nv.-'.,,|.:II':bI.-n-n--- JG

“_'—:i-j11—l4!l:41rI.,‘:,Au_T.-nun--..-,...-____

-----...,---e--1....“-.-—v---.-

----.,__:"'--

i‘~"iGiiPiE4.225Thenatureofthevegetationinanareacanhaveasignificantinfluenceonsoilformation. Theorganiclitterreceivedbythesoilfromtheconifersishighinacidresins,whichcontributestoanaccumulationofacidinthesoil result,intensiveacidleachingisanimportantsoil-formingprocess.(PhotobyBillBrooks/Alamy)B's SonoranDesertisverydifferentincharacterfromthenorthernconiferousforest.(Photoby RussBishop/agefootstook)

Plantsandanimalsfurnishorganicmattertothesoil bogsoilsarecomposedalmostentirelyoforganicmatter,whereas desertsoilsmaycontainonlyatinypercentage quantityoforganicmattervariessubstantiallyamongsoils,itis theraresoflthatcompletelylacksit. Theprimarysourceoforganicmatterisplants,althoughani- malsandtheuncotmtablemicroorganismsalsocontribute organicmatterdecomposes,importantnutrientsaresuppliedto plants,aswellastoanimalsandmicroorganismslivinginthesoil. Consequently,soilfertilitydependsinpartontheamountof organicmatterpresent,thedecayofplantandanimal remainscausestheformationofvariousorganicacids- plexacidshastentheweatheringprocess ahighwater-holdingabilityandthusaidswaterretentioninasoil. Microorganisms,includingfungi,bacteria,andsingle-celled protozoa,playanactiveroleinthedecayofplantandanimal

remains,amaterialthatnolonger resemblestheplantsandanimalsfromwhichitisformed- tion,certainmicroorganismsaidsoilfertilitybecausetheyhave theabilitytoconvertatmosphericnitrogengasintosoflnitrogen compounds. Earthwormsandotherburrowinganimalsacttomixthemin- eralandorganicportionsofasoil,forexample,feed onorganicmatterandthoroughlymixsoilsinwhichtheylive,often movingandenrichingmanytonsperacreeachyear holesalsoaidthepassageofwaterandairthroughthesoil.

Topography Thelayofthelandcanvarygreatlyovershortdistances variationsintopographycanleadtothedevelopmentofavariety oflocalizedsoiltypes

96 CHAPTER 4 Weathering,Soil,andMassWasting

lengthandsteepnessofslopeshaveasignificantimpactonthe amountoferosionandthewatercontentofsoil. Onsteepslopes,soilsareoftenpoorlydeveloped- uationslittlewatercansoakin,andasaresult,soilmoisturemay beinsufficientforvigorousplantgrowth,becauseof acceleratederosiononsteepslopes,thesoilsarethinornonex- istent(seeFigure4). Incontrast,waterloggedsoilsinpoorlydrainedbottomlands haveamuchdifferentcharacter dark matterthataccumulatesbecausesaturatedconditionsretardthe decayofvegetation aflat-to-undulatinguplandsurface, minimumerosion,andsufficientinfiltrationofwaterintothesofl. Slopeorientation,thedirectionaslopeisfacing,alsoissig- nificant-latitudesoftheNorthernHemisphere,a south-facingslopereceivesagreatdealmoresunlightthandoes anorth-facingslope,asteepnorth-facingslopemay receivenodirectsunlightatall solarradiationreceivedcausessubstantialdifferencesinsoiltem- peratureandmoisture,whichinturninfluencesthenatureofthe vegetationandthecharacterofthesoil. Althoughwehavedealtseparatelywitheachofthesoil-forming factors,rememberthatallofthemworktogethertoformsoil singlefactorisresponsibleforasoilbeingasitis,itisthe combinedinfluenceofparentmaterial,time,climate,plantsand animals,andtopographythatdeterminesasoil’scharacter.

comcsprcnscx4.

QListthefivebasiccontrolsofsoilformation. QWhichfactorismostinfluentialinsoilformation? QHowmightthedirectionaslopeisfacinginfluencesoil formation?

The Soil Profile

Itisimportanttorealizethatsoil-formingprocessesoperatefrom thesurfacedownward,variationsincomposition,texture, structure,andcolorgraduallyevolveatvaryingdepths verticaldifferences,whichusuallybecomemorepronouncedas timepasses,divide thesoil intozonesorlayersknownas horizons,youwouldseethatits wallsarelayered horizonsconstitutesthesoilprofile(i'.¥‘.ig i presentsanidealizedviewofawell-developedsoil profileinwhichfivehorizonsareidentified downward,theyaredesignatedasO,A,E,B,andC,respectively. Thesefivehorizonsarecommontosoilsintemperateregions. Thecharacteristicsandextentofdevelopmentofhorizonsvary indifferentenvironments,differentlocalitiesexhibitsoil profilesthatcancontrastgreatlywithoneanother. TheOhorizonconsistslargelyoforganicmaterial contrasttothelayersbeneathit,whichconsistmainlyofmineral matter- tersuchaslooseleavesandotherorganicdebristhatarestill recognizable,thelowerportionoftheOhorizonis

_-.-¢.==.,~f-_r--.,‘I;,..'.‘

--...~,,.-nun

--.-.....‘‘--.,.-

A.

B. <:;.‘.-itiWeallknowthatabookshouldnotbejudgedby itscover surface-sectionfromthesurface throughallofthesoil’shorizonsandintotheparentmaterial profileshowsawell-developedsoilinsoutheasternSouthDakota. (PhotobyE)B thissoil inPuertoRicoareindistinct,givingitarelativelyuniform appearance.(PhotocourtesyofSoilScienceSocietyofAmerica)

madeupofpartlydecomposedorganicmatter(humus)inwhich plantstructurescannolongerbeidentified, theOhorizonisteemingwithmicroscopiclife,includingbacte- ria,fungi,algae,andinsects oxygen,carbondioxide,andorganicacidstothedevelopingsoil.

98 CHAPTER 4 Weathering,Soil,andMassWasting

TABLE4

Alfisols Moderatelyweatheredsoilsthatformunderborealforestsorbroadleafdeciduousforests,richinironandaluminum accumulateinasubsurfacelayerinresponsetoleachinginmoistenvironments,productivesoils,becausetheyareneithertoo wetnortoodry. Andisols Aridosols orsaltinsubsoil;loworganiccontent(seeFigure4). Entisols

Youngsoilsinwhichtheparentmaterialisvolcanicashandcinders,depositedbyrecentvolcanicactivity. Soilsthatdevelopindryplaces;insufficientwatertoremovesolubleminerals;mayhaveanaccumulationofcalciumcarbonate,gypsum,

Youngsoilshavinglimiteddevelopmentandexhibitingpropertiesoftheparentmaterial formedonrecentriverdepositstoverylowforthoseformingonshiftingsandorrockyslopes. Gelisols yearslowsoil-formingprocesses. Histosols

Youngsoilswithlittleprofiledevelopmentthatoccurinregionswithpermafrost

Organicsoilswithlittleornoclimaticimplications. Dark,partiallydecomposedorganicmaterialconrmonlyreferredtoaspeat. Inceptisols Weaklydevelopedyoungsoilsinwhichthebeginning(inception)ofprofiledevelopmentisevident,they existfromtheArctictothetropics. Mollisols Dark,softsoilsthathavedevelopedundergrassvegetation,generallyfoundinprairieareas-richsurfacehorizonthatisrichin calciumandmagnesium.Soilfertilityisexcellent borealoralpinetotropical(seeFigure4). Oxisols Soilsthatoccuronoldlandsurfacesunlessparentmaterialswerestronglyweatheredbeforetheyweredeposited tropicsandsubtropicalregions,oxisolsareheavilyleached,hencearepoorsoilsforagriculturalactivity (seeFigure4). Spodosols Soilsfoundonlyinhumidregionsonsandymaterial(seeFigure4)andcoolhumidforests. Beneaththedarkupperhorizonofweatheredorganicmaterialliesalight-coloredhorizonofleachedmaterial,thedistinctivepropertyof thissoil. Ultisols Soilsthatrepresenttheproductsoflongperiodsofweatheringfivaterpercolatingthroughthelsoilconcentratesclayparticlesinthelower horizons(argillichorizons).Restrictedtohumidclimatesinthetemperateregionsandthetropics,wherethegrowingseasonislong. oexten' ' g,h ' ' Vertisols

Abundantwaterandalongfrost-freeperiodcontributet srveleachrn encepoorersorlquality. Soilscontaininglargeamountsofclay,whichshrinkupondryingandswellwiththeadditionofwater, providedthatadequatesuppliesofwaterareavailabletosaturatethesoilafterperiodsofdrought SHGSSGSOI1l1l'EIl.

patternoftheSoilTaxonomy’s 12 soilorders- tionsystems,theSoilTaxonomyisnotsuitableforeverypurpose. Itisespeciallyusefulforagriculturalandrelatedland-usepurposes, butitisnotausefulsystemforengineerswhoarepreparingeval- uationsofpotentialconstructionsites.

####### CONCEPTcnscx 4. 9

QVllhyaresoilsclassified?

Soil Erosion

SoilsarejustatinyfractionofallEarthmaterials,yettheyarea vitalresource plants,theyaretheveryfoundationofthehumanlife-support system productivityofsoilsthroughfertilizationandirrigation,soilscan bedamagedordestroyedbycarelessness inprovidingfood,fiber,andotherbasicmaterials,soilsareamong ourmostabusedresources. Perhapsthisneglectandindifferencehasoccurredbecause asubstantialamountofsoilseemstoremainevenwheresoil erosionisserious,althoughthelossoffertiletop- soilmaynotbeobvioustotheuntrainedeye,itisagrowingprob- lemashumanactivitiesexpandanddisturbmoreandmoreof Earth’ssurface.

HowSoilIsEroded Soilerosionisanaturalprocess;itispartoftheconstantrecycling ofEarthmaterialsthatwecalltheroclccycle, erosionalforces,especiallywaterandwind,movesoilcomponents fromoneplacetoanother,raindropsstrikethe landwithsurprisingforce(f".~“'?i*' Eachdropactslikeatiny bomb,blastingmovablesoilparticlesout oftheirpositionsinthe soilmass,waterflowingacrossthesurfacecarriesawaythe dislodgedsoilparticles ofwater,thisprocessistermedsheeterosion. Afterathin,unconfinedsheethasflowedforarelativelyshort distance, threadsofcurrenttypicallydevelopandtinychannels calledrillsbegintoform,knownas gullies,arecreatedasrillsenlarge(1? -s Whennormal farmcultivationcannoteliminatethechannels,weknowtherills havegrownlargeenough tobecalledgullies- lodgedsoilparticlesmoveonlyashortdistanceduringeachrain- fall,substantialquantitieseventuallyleavethefieldsandmake theirwaydownslopetoastream, thesesoilparticles,whichcannowbecalledsediment,aretrans- porteddownstreamandeventuallydeposited.

RatesofErosion Weknowthatsoilerosionistheultimatefateofpracticallyall soils,erosionoccurredatslowerratesthanitdoes todaybecausemoreofthelandsurfacewascoveredandprotected

SoilErosion

150" 120" ob“ ,,__:,.,, so". I 20" I €(é:—'ft 7*-. __~z>—'==."->T’:"q.. __ 41--I-_\ -E" 15; 7,-1% *5" L- *iE%E"* r seq. I J“ - \ 2-’. if —, _K .-’“T

L‘-,1RX’ 7 Pa' i nu ”‘rs I 2 % ‘ =“' '-. P F 7 e'-;:- 1 60“1: '=5f";:'§i-=I_‘§?'~1“"5:_\t:,- -=-Q _=}§§q£‘-' » _ J -. ,,-1»~:.-.-- ---'/‘' 1,--!€-if?-'.-t_:&5;;... -'"-1 - ‘...

ItT_,,_Ln."-1-1;"-'~'-.'.‘;.A

g"§;§¢__--::§-..,‘,>,]J > -~?*'- ,‘:-fl:__;-._ 2;.II>;’.~J:>..--..L—-éérI. rat»-t-Iii?1474' ‘-_ y- ‘: B-,‘:;f;,slj-if-',!'l'.E'¢";'§;:-_r ‘Hrt '- -

l30° "‘W

0,, Equator

' |:|Alfisols(High-NutrientSoils)

3°” I

|:|Gelisols(PermafrostSoils) j ' so" so" 0 as" so“ so" 120" 1

L'1 --’-.'‘-4 ff;"-1"1I-. ‘D ‘II‘;-.-1'18‘Kl.’-' -.-9" =-."- - k _ |—~..-1*‘it-$3_y.-'4 ; .’>,,/""1,-»P=1‘v,?4l:!3;,. !'_ ~'5’ ' .'-3:

1 §.,l?‘-.;’-i;'l_'.»‘*--—.'*£‘"2 "ta: A‘ Andisols(VolcanicSoils) 1?” rt»

A” ".""*V5..‘X-‘!-$4-HlN"1-..._‘.-.

r

"..&quot;‘H'-‘:

.-v-

.-"'1' I Aridisols(DesertSoils) Entisols(NewSoils) .__

l."

-is-fl Equator ‘Kw.-= _- K. r F _ &r~|.':.,-, \

1 ___ 9 r 10002000 SGODHILES “O o 1 use 2 coo 3000 KILOHETERS $-' MILLERPROJECTION - r--J§ J? I

  • Histosols(OrganicSoils) lnceptlsols(YoungSoils) ‘-Mollisols(PrairieSoils) q- Oxisols(TropicalForestSoils) E'>w=~ Spodosols(ConiferForestSoils) |:| Ultisols(Low-NutrientSoils) L 2 Vertisols(SwellingClaySoils) RockLand I|:| ShiftingSands

II lce/Glacier

i?"?ii3¥.iRi*r'15Globalsoilregions Taxonomy's 12 SO11orders.(AfterU,Natural ResourcesConservationService,WorldSoilResourcesStaff)

bytrees,shrubs,grasses,andotherplants,human activitiessuchasfarming,logging, andconstruction,which removeordisruptthenaturalvegetation,havegreatlyaccelerated therateofsoilerosion,the soilismoreeasilysweptawaybythewindorcarrieddownslope bysheetwash. Naturalratesofsoilerosionvarygreatlyfromoneplaceto anotheranddepend onsoilcharacteristicsaswellassuchfac- torsasclimate,slope,andtypeofvegetation, erosioncausedbysurfacerunoffmaybeestimatedbydeter- miningthesedimentloadsofthestreamsthatdraintheregion. Whenstudiesofthiskindweremadeonaglobalscale,theyindi- catedthatpriortotheappearanceofhumans,sedimenttrans- portbyriverstotheoceansamountedtojustover 9 billionmetric tonsperyear(1metricton=1,000kilograms).Bycontrast,the amountofmaterialcurrentlytransportedtotheseabyriversis

Fitiiiiir 4 inWhenrtrsraining,millionsofwaterdropsarefalling atvelocitiesapproaching 10 meterspersecond(35kilometersper hour) Whenwaterdropsstrikeanexposedsurface,soilparticlesmay splashashighas 1 metermtothearrandlandmorethanameter awayfromthepointofrarndropimpactSoildislodgedbysplash erosionISmoreeasilymovedbysheeterosion(Photocourtesyof USDAfNaturalResourcesConservationService)

-.»---rm 6 ‘J _ T __aL._a__x-.._

"p 4:.

WeatheringCreatesOreDeposits 101

Fifiiiilfi4 Dakota, especiallywhenthefieldsarebare anddeflectitupward,whichdecreasesthelossoffinesoilparticles. B-round protectionfromwinderosionforthiscropland.(PhotosbyErwinC U.S./NaturalResourcesConservationService)

CONCEPTcnscx4

QHowhavehumanactivitiesaffectedtherateofsoilerosion? QWhataretwodetrimentaleffectsofsoilerosionasidefromthe lossoftopsoil?

Weathering Creates

OreDeposits

Weatheringcreatesmanyimportantmineraldepositsbycon- centratingminoramountsofmetalsthatarescatteredthrough unweatheredrockintoeconomicallyvaluableconcentrations. Suchatransformationisoftentermedsecondaryenrichment andtakesplaceinoneoftwoways,chemical weatheringcoupledwithdownward-percolatingwaterremoves undesiredmaterialsfromdecomposingrock,leavingthedesired elementsenrichedintheupperzonesofthesoil isbasicallythereverseofthefirst,thedesirableelements thatarefoundinlowconcentrationsnearthesurfaceareremoved andcarriedtolowerzones,wheretheyareredepositedand becomemoreconcentrated.

Bauxite Theformationofbauxite,the principaloreof aluminum,isoneimportantexampleofanore createdasaresultofenrichmentbyweathering processes(Fi~Jti-tis).Althoughaluminumisthe thirdmost abundantelement inEarth’scrust, economicallyvaluableconcentrationsofthisimpor- tantmetalarenotcommonbecausemostalu- minumistiedupinsilicatemineralsfromwhichit isextremelydifficulttoextract. Bauxiteformsinrainytropicalclimates aluminum-richsourcerocksaresubjectedtothe __p_m intenseandprolongedchemicalweathering . ofthetropics,mostoftl1ecommonelements, l includingcalcium,sodium,andpotassium, -3 areremovedbyleaching isextremelyinsoluble,itbecomesconcen- tratedinthesoil(asbauxite,ahydrated aluminumoxide).Thus,theformationof bauxitedependsonclimaticconditionsin whichchemicalweatheringandleachingare pronounced,plus,ofcourse,thepresenceof aluminum-richsourcerock manner,importantdepositsofnickeland cobaltdevelopfromigneousrocksrichinsil- icatemineralssuchasolivine. Thereissignificantconcernregardingtheminingofbauxiteand otherresidualdepositsbecausetheytendtooccurinenviromnen- tallysensitiveareasofthetropics oftropicalvegetation,thusdestroyingrainforestecosystems- over,thethinmoisture-retaininglayeroforganicmatterisalsodis- turbed,itbecomesbricldike andlosesitsmoisture-retainingqualities- ductivelyfarmednorcanitsupportsignificantforestgrowth long-termconsequencesofbauxiteminingareclearlyofconcernfor developingcountriesinthetropicswherethisimportantoreismined.

FiC§URE4 weatheringprocessesundertropicalconditions redorbrowntonearlywhite.(PhotobyE)

102 CHAPTER 4 Weathering,Soil,andMassWasting

OtherDeposits

Many copper andsilverdepositsresultwhenweathering processesconcentratemetalsthataredispersedthroughalow- gradeprimaryore containingpyrite(FeS2),themostcommonandwidespread sulfidemineral weathers,sulfuricacidforms,whichenablespercolatingwaters todissolvetheoremetals,themetalsgradually migratedownwardthroughtheprimaryorebodyuntiltheyare precipitated inthechemistryofthesolutionwhenitreachesthegroundwater zone(thezonebeneaththesurfacewhereallporespacesarefilled withwater).Inthismanner,thesmallpercentageofdispersedmetal canberemovedfromalargevolumeofrockandredepositedasa higher-gradeoreinasmallervolumeofrock.

####### CONCEPTcnscrc4 1

0 Howcanweatheringcreateanoredeposit?Whatimportant oreisanexample?

Mass Wasting:

The Work of Gravity

Landslidesarespectacularexamplesofabasicgeologicprocess calledmasswasting movementofrock,regolith,andsoilunderthedirectinfluence ofgravity examinedinsubsequentchaptersbecausemasswastingdoesnot requireatransportingmediumsuchaswater,wind,orglacialice. Earth’ssurfaceisneverperfectlyflatbutinsteadconsistsof slopes;othersaremoderateor

gentle;othersareshortandabrupt. Someslopesaremantledwithsoilandcoveredbyvegetation;oth- ersconsistofbarrenrockandrubble great, theyarenotstaticfeaturesbecausetheforceofgravitycauses materialtomove andpracticallyimperceptible- sistofaroaringdebrisfloworathunderingrockavalanche- slidesareaworldwidenaturalhazard(Figure4).Whenthese naturalprocessesleadtolossoflifeandproperty,theybecome naturaldisasters. Mostmasswasting,whetherspectacularorsubtle,isthe resultofcircumstancesthatarecompletelyindependentof humanactivities anticipated, stepscanoftenbetakentocontroldownslopemovementsor limitthedamagesthatsuchmovementscancause- tialformasswastinggoesunrecognizedorisignored,theresults canbecostlyanddangerous mostdownslopemovementsoccurwhetherpeoplearepresent ornot,manyoccurrencesareaggravatedoreventriggeredby humanactions.

TheRoleofMassWasting Intheevolutionofmostlandforms,masswastingisthestepthat followsweathering,weatheringdoesnotproduce significantlandforms,landformsdevelopastheproducts ofweatheringareremovedfromtheplaceswheretheyoriginate. Onceweatheringweakensrockandbreaksitapart,masswasting transfersthedebrisdownslope,whereastream,actingasa conveyorbelt,usuallycarriesitaway(seeFigure4,p). Althoughtheremaybemanyintermediatestopsalongtheway, thesedimentiseventuallytransportedtoitsultimatedestination: thesea.

itiil-itiiiii-’i;ti%OnAugust6,2006,photographerHerbDunnwitnessedthisrockfallalongtheMercedRiverinCalifornia’sYosemiteNational Park,theimpactoffallingrockproducesanexplosion ofdustanddebris,therockfalltriggersachainreaction treesalongtheway.(©DunnfiightPhotograph)

Q

Es. i:= K.. -=;:>---=F34-.§{":,,:-:f»--- '-s__Q.»-'_--

  • .. - "i‘ -s:r=;¢=.-P?.;s;:-.-‘ff_;;?.*'
Was this document helpful?

Chapter 04

Course: Secondary education (bio sci)

609 Documents
Students shared 609 documents in this course
Was this document helpful?