Skip to document

Chapter 05

For the whole chapter 5 topic in science.
Course

Secondary education (bio sci)

609 Documents
Students shared 609 documents in this course
Academic year: 2020/2021
Uploaded by:
0followers
15Uploads
81upvotes

Comments

Please sign in or register to post comments.

Preview text

1'

€*'.‘:'?§‘-\u-'|-_',-t---_'>;.L.;--

..,_-Q’ ‘--.

L?‘

I FOCUSonCONCEPTS

~

Whyisgroundwaterimportant?

Alltheriversrunintothesea;yettheseaisnotfull;untotheplacefromwhencetherivers come,thithertheyreturnagain.”(Ecclesiastes1:7) AstheperceptivewriterofEcclesiastesindicated,wateriscontinuallyonthemove,from theoceantothelandandbackagaininanendlesscycle- I logiccyclethatreturnswaterto thesea,andsome movesmoreslowlybelowthesurface,streamsandground- , waterrepresentbasiclinksintheconstantcyclingoftheplanet’swater,weexaminethe l factorsthatinfluencethedistributionandmovementofwater,aswellaslookathowwatersculptures thelandscape,theGrandCanyon,NiagaraFalls,OldFaithful,andMammothCaveall owetheirexistencetotheactionofwateronitswayto thesea.

Toassistyouinlearningtheimportantconceptsinthischapter,focusonthefollowingquestions: in Whatisthehydrologiccycle?Whatisthesourceofenergythatpowersthecycle? Whatarethethreemainzonesofariversystem? Whatarethefactorsthatdeterminetheflowvelocityofastream? anTheworkofastreamincludeswhatthreeprocesses? 51$Whatarethetwogeneraltypesofstreamvalleysandsomefeaturesassociatedwitheach? Howaredeltas,naturallevees,andalluvialfanssimilar?Howaretheydifferent? 113:Whydofloodsoccur?Whataresomebasicflood-controlstrategies?

Whatisgroundwater,andwhatfactorsinfluenceitsstorageandmovement? Howdosprings,geysers,wells,andartesiansystemsform? Whataresomeenvironmentalproblemsassociatedwithgroundwater? Whatfeaturesareproducedbythegeologicworkofgroundwater?Whatiskarsttopography?

Earth as a System:

The Hydrologic Cycle

SculpturingEarth’sSurface U5F"G3Q>Fm"'9:g2-lfiHI1'71 9 RunningWater WaterisjustabouteverywhereonEarth—intheoceans,glaciers, rivers,lakes,air,soil,andinlivingtissue i).Allofthese reservoirsconstituteEarth’shydrosphere,thewatercontent ofthehydrospherecomprisesabout1 (326millioncubicmiles).Thevastbulkofit,about9'7, isstoredintheglobaloceans another2,leavingonly0 amonglakes,streams,groundwater,andtheatmosphere(see Figure1,p].AlthoughthepercentagesofEarth’stotalwater foundineachofthelattersourcesisbutasmallfractionofthe totalinventory,theabsolutequantitiesaregreat. Watercanreadilychangefromonestateofmatter(solid, liquid,orgas)toanotheratthetemperaturesandpressures occurringatEarth’ssurface,waterisconstantlymov-

ingamongtheoceans,theatmosphere,thesolidEarth,andthe biosphere’swatersupplyis calledthehydrologiccycle interrelationshipsamongdifferentpartsoftheEarthsystem. Thehydrologiccycleisagiganticworldwidesystempowered byenergyfromtheSuninwhichtheatmosphereprovidesthe vitallinkbetweentheoceansandcontinents A.).Water evaporatesintotheatmospherefromtheoceanandtoamuch lesserextentfromthecontinents- ladenair,oftengreatdistances,untilconditionscausethemois- turetocondenseintocloudsandtoprecipitateandfall precipitationthatfallsintotheoceanhascompleteditscycleand isreadytobeginanother, however,mustmakeitswaybacktotheocean. Whathappenstoprecipitationonceithasfallenonland? Aportionofthewatersoaksintotheground(calledinfiltra- tion),slowlymovingdownward,thenlaterally,finallyseeping intolakes,streams,ordirectlyintotheocean rainfallexceedsEarth’sabilitytoabsorbit,thesurpluswater flowsoverthesurfaceintolakesandstreams,aprocesscalled runoff

120 CHAPTER 5 RunningWaterandGroundwater

returnstotheatmospherebecauseofevaporationfromthe soil,lakes,andstreams,someofthewaterthatinfiltrates thegroundsurfaceisabsorbedbyplants,whichthenreleaseit intothe atmosphere calledtranspiration (trans=across,spire=tobreathe).Becausewecannotclearly distinguishbetweentheamountofwaterthatisevaporatedand theamountthatistranspiredbyplants,thetermevapotran- spirationisoftenusedforthecombinedeffect. Whenprecipitationfallsinverycoldareas—athighelevations orhighlatitudes—thewatermaynotimmediatelysoakin,run off,orevaporate,itmaybecomepartofasnowfieldora glacier,glaciersstorelargequantitiesofwateronland. Ifpresent-dayglaciersweretomeltandreleasealltheirwater,sea levelwouldrisebyseveraldozenmeters manyheavilypopulatedcoastalareas, overthepast 2 millionyears,hugeicesheetshaveformedand meltedonseveraloccasions,eachtimechangingthebalanceof thehydrologiccycle. Figure5’soverallwaterbalance,orthevol- umeofwaterthatpassesthrougheachpartofthecycleannually. Theamountofwatervaporintheairatanyonetimeisjustatiny fractionofEarth’stotalwatersupply thatarecycledthroughtheatmosphereoveraone-yearperiod areimmense—-some380,000cubickilometers—enoughtocover Earth’sentiresurfacetoadepthofabout 1 meter(39inches).Esti- matesshowthatoverNorthAmericaalmostsixtimesmorewater iscarriedbymovingcurrentsofairthanistransportedbyallthe continents’rivers. Itisimportanttoknowthatthehydrologiccycleisbalanced. Becausethetotalamountofwatervaporintheatmosphere remainsaboutthesame,theaverageannualprecipitationover Earthmustbeequaltothequantityofwaterevaporated- ever,forallofthecontinentstakentogether,precipitationexceeds evaporation,overtheoceans,evaporationexceeds precipitation- ping,thesystemmustbeinbalance,the36,000cubic kilometersofwaterthatannuallyrunsofffromthelandtothe oceancausesenormouserosion,thisimmensevolumeof movingwateristhesinglemostimportantagentscalptingEartlfs landsurface. Tosummarize,thehydrologiccycleisthecontinuousmove- mentofwaterfromtheoceanstotheatmosphere,fromthe atmospheretotheland,andfromthelandbacktothesea land-back-to-the-seastepistheprimaryactionthatwearsdown Earth’slandsurface,wefirstobservetheworkof waterrunningoverthesurface,includingfloods,erosion,and theformationofvalleys laborsofgroundwaterasitformsspringsandcavernsandpro- videsdrinkingwateronitslongmigrationtothesea.

CONCEPTCHECK 5. QDescribeorsketchthemovementofwaterthroughthe hydrologiccycle, whatpathsmightittake? Q“Thatiseuapotranspiration?

Running Water

SculpturingEarth'sSurface

‘Rm"'202-: 01 fl‘! 9 RunningWater Recallthatmostoftheprecipitationthatfallsonlandeitherenters thesoil(infiltration)orremainsatthesurface,movingdownslope asrunoff intothegrounddependsonseveralfactors:(1)intensityanddura- tionofrainfall,(2)amountofwateralreadyinthesoil,(3)nature ofthesurfacematerial,(4)slopeoftheland,and(5)theextentand typeofvegetation/Vhenthesurfacematerialishighlyimperme- able,orwhenitbecomessaturated,runoffisthedominantprocess. Runoffisalsohighinurbanareasbecauselargeareasarecovered byimpermeablebuildings,roads,andparkinglots. Runoffinitiallyflowsinbroad,thinsheets floweventuallydevelopsthreadsofcurrentthatformtinychan- nelscalledrills,whichjointoform streams,butasoneintersectsanother, largerandlargeronesform waterfromabroadregion.

DrainageBasins Thelandareathatcontributeswatertoariversystemiscalled Eldrainagebasin iiiI;< E151).Thedrainagebasinofonestream isseparatedfromthedrainagebasinofanotherbyanimaginary

Overlandflow

.=)—¢-- 1 3:55-=f'__

,-"'-' '._'-tr,-'»‘—1-;.¢-i’--1*;1-i”-v’-'*:1$'». 1 :-__‘.":.1-3*..- _2 <- ..,;<;.-§-,, .,, .- --- ,,, -@_<< 1,.C.;:‘~.E: 7 _-"', ' '‘. f i“='"’-5%, ,,-C_" ' I ' I

/,,.

Ids‘

**°i‘J=-“ills;i_

W/,5/ -aw, 1 M.,?,.,,i_\ Drainagedivide i’““"'?’f,,’H. ./¢',/ ,/ 5 “i --

xv \‘% \y// Q ./

-F l/ "8/0“S.'/,./C r / in ll‘ b@’ 4/ " /060;“\Qfiirgin / l C

/ / 0,..\ _. ,,,»/57., . s /I//O,\\§, i ’ Trlbutarle mi _ ‘* if‘

"'»a}l»P"

-a ‘;"“=""'?'_ii-iiK;‘‘ ‘ - -.\ .‘fig’. i ‘ \ \

-r MH ”". C I l—':::'11l_<—-Truhk ‘imp 5 - _ , ~ stream X‘-.._ ii)'=_,;1‘_an.,--i---—~" my—--" Outlet

/->’~<a@%\ v‘
/ /,.-/1/_./1HUi,3:.i/,?x \‘-4!,1‘.J‘?it <'\ :'\V

"\.1’ I.

i/we

.- Ii Adrainagebasinistheareadrainedbyastreamandits tributaries.

RunningWater 121

Students SometimesAsk...

Istheamountofwatervaporthatplantsemitintothe atmospherethroughtranspirationasignificantamount? 60 centimeters(2feet)deepover theentirefield oftreesmaypumptwicethis amountintotheatmosphere.

Usethisexampletojudgefor yourself cropsmaytranspirethe equivalentofawaterlayer

linecalledadivide- ratingtwosmallgulliesonahillsidetoacontinentaldivide, whichsplitswholecontinentsintoenormousdrainagebasins. TheMississippiRiverhasthelargestdrainagebasininNorth America(:-w;—f';).ExtendingbetweentheRockyMountains inthewestandtheAppalachianMountainsintheeast,the MississippiRiveranditstributariescollectwaterfrommorethan 3(1)ofthe continent.

RiverSystems Riversystemsinvolvenotonlyanetworkofstreamchannels,but theentiredrainagebasin- atingwithinthem,riversystemscanbedividedintothreezones: sedimentproduction—whereerosiondominates,sedimenttrans- port,andsedimentdeposition Itisimportantto recognizethatsedimentisbeingeroded,transported,and

.r Ai. ‘2., _ -Air Q ,- . =- ' -,._ 1.. pk -..,_ *r prducltlon(erosion)

.,i_. ii _ "'“"‘--. IZ -Z5_ : . =._ - _. “ ‘- _,/-"'3' /z

1"rail,

./'

lg:F VT.-r" r’Lilli‘(1.

.-1'!’

.-- --_ _ ' _ ;,.i";-~--an-I'==.,T--fI. - \ ,,.-’»----"" Zoneof _ §,/' _ - transportation .1-—'-"T"-‘aS\ Trunk->, ,3‘ stream I // ..‘. // ‘~=3"-'::,~%.,,\ I. gD’I// . -w ' 1-I‘"“T-‘--_. _..-. Zoneof e deposition' it I;Ariversystemcanbedividedintothreezonesbased onthedominantprocessoperatingwithineachzone zonesofsedimentproduction(erosion),sedimenttransport,and sedimentdeposition.(AfterShumin)

depositedalongtheentirelengthofastream,regardlessofwhich processisdominantwithineachzone. Thezoneofsedimentproduction,wheremostofthewater andsedimentisderived,islocatedintheheadwaterregionofthe riversystem bedrockthatissubsequentlybrokendownbyweathering,then transporteddownslopebymasswastingandoverlandflow erosioncanalsocontributesignificantamountsofsediment addition,scouringofthechannelbeddeepensthechanneland addstothestream’ssedimentload.

§_=;.,-2%-,regardlessofsize thatcontributewaterto theMissouriRiver,whichinturnisoneofmanythatmakeupthedrainagebasinoftheMississippiRiver basinoftheMississippiRiver,NorthAmerica'slargest,coversabout 3 millionsquarekilometers.

  • r_-»"-‘?::12---zi.i 2.--"5-—.:t-,=,—?>’-‘:1-’.'.'r:=—YF--=»'"I-*5-"t').°-=1 i.__-‘;’£>.__E::.;’w;:{‘;!E:§:;:Q.-s=.-15»,-=w.. 3’;.1-.:sj=-'-. : --;;;~:s-‘* e ' YellowstoneRiver A , , 5' '. ".-4 i.... Dgungge 0 7 ~ M‘$$'$$'PP' ~ K asm River ._ 5 -1Y9ll0:W$IQnEeBl¥€l§7ax.}?s’ §§=....)*.;i.;; >.,I ""3,"““*’;-‘-g .1“r“-i‘;':’:_.,-1;;_-.. V’."‘IA"la"-E‘" Dramage -" _..> ~— l’Q

" * *-."'1 "=-érl--i=..-ll.":~:§-;,-'.,;;¢f~;.e--,=».=-....=.-11 'i-»-;-$1‘";:2-2:5‘-'?€r¢';'§:--i>;z.:~§.:*5ee;;e»-»;s;.,::;:>%,'—.."»f‘?i:.'I»-5»;-§»5.-re‘,: Basln. I-- 1

  • I“ 2 -.-- - - -‘-- 'r‘ ,»'i'zl-it‘'''Fr.,-r"-$7-a,—W.-“,.¢v1'-‘='5.__"'i"'.'' 31¢-~.,iiiTI75;;-fl,'%"T1"I>*7",1,-.;,,. ..‘ééi.---.',.-‘T--'”z.'-,--Y;;§;,-zr_;f:'=’:"'/:7:'':£%.=''“---"'- _ - ‘ - ,/ "fit""335‘-""4-er'.-F ».. ;;f '-l-'C- _, ‘1-'-‘i"‘~;_-1‘_T'.-"-.-.,.'-Q—:':6'-,-II,".3''1-‘"=5-",<1*"Fi,'"-2-L-‘.“.':1»-'.-‘;:;,-,-:f.‘~;§=‘-‘*-—“.»>.,r-; 11 _“Y-'-"‘;=;-;;:,-3=-§’j.:»".'r_-L‘-—<5..~."A1-1'“YQ---<;;";::’>._''-.-!T:;.'->_;-;/-.-,'"' —>* -' i . 4"“ -—,-=_ -. .<u’: »-— 4 -. ...'» --A-,.--_=-;, .»;§---42: -.»- .=...,.-— ‘-

MEQ“‘i. xliwflé-T;"'sl~< ‘in"x'_&quot;{‘.'&#039;"wt: U-N‘:-:pi1;»,. iii’?Rx»)

"F:-. ''g,_ 2 -"'1'."-" ’t..

i’l

  • 4- -—-.--'~<.'u»=,.'-"~.,-;’.4-....-5?.§..._--., 1§"c.,.;.-..=.--,. ' ---'-..---"""-..:f"'—-_ 1 ‘*1’.-;..__'_»-—...;,. 7 -'- -'

ggt-r'»-4 M-jk-"% C C C~~‘f:J .)6-=“?*-Q‘er”P ,2‘:W6,i“'4; - L"if1| J- '7f l. asQI jg.‘ 1 ii"I4'.ll-I » 1'.'51e-r. "" --—-. " H C_=.. _.. i»--1'. l ", —',;%_’; Z; C 3 .- ‘in '-ilk!“ ’ _r~- IH:

  • .;. ’ "' ~-' ;-'75¢"_.. 0 - 1 IL-l * ”’ i "e r J’

Yellowstone‘§=;;<%i,=,?'=,;';i,;.;,;."'55.-~"a_{"--’-’;e-rj : -3- _, ",,-I .-~=1-i;:;.'. _ .,i'=.,-_ -r‘ Ni - -“,Mv=isoun'. ‘- .- "M15pres]"erp| -= " Lake .,.;.>';,i¢§;,';'»'»;<j,-;.-_‘i:;;,_.,-.:e _.,; ii -;j§i-.- K IFil\l9__l‘Basln _ s " ‘_ -l Ii-‘:1-H1:-I’: IH:'. 4 7 T' “Ix - F i' CIll,7' i’ .,g,/s-... - - , r. "3. '-I i-H‘.l' 1'” /fr - ~.' -.... I. ll-,if, 1'. 1 ' 1’,“_-.;;g'i;':-.,-*'-..'‘ "7' U‘ -: .;;i:‘ijl',,fi'.;':'-"'-?’ 3 , 7'I--‘l-.- '-~ 'l_ " viii ': ' I .'*.- iii‘7- - :0 _ - i-jg;<';;‘:=&#039;.*'.~;;-."'(;:'_ ti;-'‘-"‘- ' , Iii I1:\‘iifiHill {i i ii -_ I.‘I

-\g i‘€.\f4:"-»-is--'’A=<;:-._ ,,-....-,_ 1. -'-:»___¢.<;---i..-‘» ‘.. ... ‘»., *.5-1;.7‘H:,.,j?-7,,on-.,:"f-5--7’i,pi“.r,--3+, e _ - " l"’fi€»?’.=;1.:;'+i:‘if’.",-‘'Q:'r,'.*i--,;E-if.-r_’-;'__,-‘’1_‘_r,E‘‘C.»-1’;---K‘JI".1,-,:,ea' ‘.1''"fr,-,'<=1/r5-1;;,>Tr_'5:L; Q--,1?-‘ 1 - —,;-’r=-'-'.—."C_;i:;—_“Te. -"‘ ;_=i'', ,<.‘iiiiJ 1 ' - " "f 'or i} ‘ r ;\ lli i'

_-‘Fain\y—I‘.‘7*

.--'-“'-~'e w-k ‘“b'.‘|"2-' p: ,,___ ‘\JLI'i:-3:-. "'*-_..._ W r.‘.,

“ea

1-»-‘I

2,...‘-if 1~_ii‘\i

Ii.-i__;;~i. - I gS..§Tmfii;l|.._=i -—-'{ii-

rs‘-=.r_,.."r-.;-,_ F ,;g;.=¢--1-J,-,-,,;,,,& r i = 1.: 0' i'i:\ t — is' ... , 5 ‘ "*

< ~ 1 ,,§.

1 -=2"-‘—_. -. ....--..,,-. ._.''LA‘'----12--‘_'r.'1"-">7-)1’_-;'__;z/’' ““‘-11¢:-’:" hi‘'5_\ri:'rii i J "'_—>__&#039;}Fi€d-Whilfiitihi xi_i_‘- -I 0 "fa-[~L »,'"ViiS' ''r’if J... , ‘tr’--5---'--t"F‘.“ '-"El. ljssisslppl x i ll--t-‘lg-4"-‘i;"-_€'l”. ‘la’IE: -; 5 ._i. 4'

..'.-._;

Streamflow 123

'52‘

i*f_",_-.-Jon;>.ff;

L,.-.;.-.. .'4’!:§é==L...-.-r‘-.,fix.-1.‘__>.

‘ii?’

A

1 1.-"n-I_

ifi$- ‘sac-—_'~

L,- l’1--.,»_»;—‘<'-f—_‘_3_‘<;i(I.-.--I 1 ,...~_,4-Q-‘_‘-:'.'.»'fr;_-..‘- ‘ii7'T-§'1;~l-'

&#039;“'-¥.'*-1“ lSic.‘ii-itii‘-T‘

rm.. .-Q; if _

--- FIGURE5 i collectedbytheU,000gaging _ stationsintheUnitedStates usingmeasurementsfromseveralspotsacrossthestream stationisontheRioGrandesouthofTaos,NewMexico.(Photoby E)B,streamvelocityishighest atthecenterofthechannel,itszoneof maximumspeedshiftstowardtheouterbank.

FIGURE5.‘?Rapidsarecommoninmountainstreamswherethe gradientissteepandthechannelisroughandirregular moststreamflowisturbulent,itisusuallynotasroughasthat

..-

experiencedbytheseriverrunners.(PhotobyFogstockLic/Photolibrary)

‘_< -‘*3;-"='.-.~_''=---1,-2;---—'25:;-;,=r‘. .- '.j_‘,§= 'j;L,;?:_:__::_‘,_..;- _ .---at-;~—¢»?-;;';,;.:¢:s..-f=;.=:¢-.:.e;ae;.-_ ,ha_.- ;- .--2--is +1"* J‘?‘"'--»--—'“%i?i1;-is-its:-?%"@"?'--»"=-a.=_=-.--:!i<f;e5'=;:-F?‘ft-Tie?'.52.:-'7--,g¢-as-..§Q--“=-1‘-'--i..-* jii...-"*1:,,:‘>13;,,.__=,-J.-P“i_ér_:1-,1. --.:lg-='----=- .= "-':: _ '":".§$=:°"‘-{'3"°'-£1‘‘T ?j'.-5_,§';'g_—L-‘E-"I"‘"“,i"5—.'—.:$1’-.. 71 - _,.:._'e-tar"-if".-..-:-‘is°"&lt;7"I' _ _ f '".3 "'=;a'.;._;_‘.-r'23'- ‘- 5 ;:>‘;\321;.t-.. ;;..,;€=;. 7 "- °i=' '{=:".‘f -‘__‘§1l‘ILh€‘::'=:d:- i._ -,.?T.-Isa:L_fir‘-*s;:'s.......¢-"rt.-;.-es‘'"':'"="

fee

---:

. E

as-:2-:~~<;;.. ... -.-,:;‘.__=-.--*- ::.;f%=,i;§.}:?':"‘?fi'-')'>§_-é " ta‘ .,,,,,,

e-.';, “E! -1i=€‘3%

<' -—-~=-*:-

  • - .-===a=5=i;'-.--£3’;=3-'v>.-.-Z--'-*,'.—':1.:..?§'.5“sZia;=-!=:-_____-' 2 .- :' =-'=-'---=..'=1‘>—‘—‘==¥"=5:1;a;zit:a.=r-..=-=::.-ea...-sir...-Ft”.-.:'we .-.‘::.ea-E15‘=";.._'4?-%'e:f'-.'1 :i _!3,.=g,' ' _.__;__-,3}'.;-s;5i;‘?=?é-'''..‘+1-!,'__.3;i'""--f;’=;;'-i..--fig-1:‘ 'F;‘'-"-:=I..‘j':f'.-z_-fa;'-f.—T‘_'iZ'
  • 1?. 5"-7 '=-1-"--sf:2‘:-:=;"-1- ';e-' '"1-5-.'‘”. 7' ' '‘-i‘.__=4|,.='.''‘_.>--;==E:"-:i__—=L‘.:4:;i=s'I;‘_=’;:f§;if_...,...-:'-=7'-':§=:"=;J:=I‘_,_,..-,.-,-§==1-€--‘S._...gz's..-=:=:.:1;-=;-..-;.,= =.- §;;.-.__-~;g;;'=. -‘= ---.:-"-'. .=—'—.r:I:';=+.&#039;-‘.‘“-=;£.-;5I!-=--2-E=.=--’’=E'—?~;; 3.f""'.":"7125;-E§:=t=s§€‘;,i§£‘1i-'..-7::-q;=—'j.. -__;= .< g é 5 =1i¢'§E-sag. -o;-I--=5.-Lf_='é=-;c;-1.-''7."I.. =-.; 3.=;;-'-;i§-_—7'-=====ii=;==r;-=¥i:';5'5;_ . Firs,1"1*,-_

--;-'‘-..-.-'..'fE ;i"'j>'=;iéfi?-";§'--.,l2‘3=="".‘;:;-%ee;;=--5:=7-=-====-=e1;:='-II5:"=,;;i"=.-j-:;‘ii1;";-;:j-.=5,='-.‘£"E5-3'1-17?3,,==i-2215:§5=é&'"‘>f§?.-5-l;;1;I:fjf;i;;;55''e==¢.‘,€¢T'Tf;=3E&‘;'iE"-"rI‘silt-.-=.=-=+-'-'.»-=z->;=;1:15;-».=,=-=;;¢—'-32:5‘.-zgegrkgsz-=?''"='II;i2I'-.,:-'=:.--';,:"..-'—l-I-&#039;.='=ii,-=-=1-':.-A5#5-.’-'=35%.?-is' ' -;--..---=.=-.=i'='-.-.-§--_=."1'.:'i'.-i 3 ";.T.'=?=:%-—..-=1-==a==-;-£‘%==:'“EE1'I,.5?-="‘L';-:-,2-I-I1;;:‘3‘,i'=:a'j3¢T;’5'-5-3.-=' ==-=-§=?;=.:?-'g;===;f_¢=;=-,-.;&;;:£:,=:;; .=.-:=__,‘,..'=-=- 8 '>',';'.___'.'‘f?é§'-''§_¥_r2‘.‘.,.. '1-‘=7-='_ 1.-= _. 1 = :3:.;.'=’-~';;_.,__.'~:1'

Conical

Sounding weight

_-1 ...-,. "‘A _-:- ~,,-- -lI g.'.'-.'-“L:,/J‘. 9 - l'' ‘

;;:‘:hfj:,1-,.-::''-.-‘;‘,o-ii";‘.1--=-:'.':*.1§;3_':2= _ 1."-_"=‘.T‘-i.'.‘-I-.-...-.'T -'— 3 4?-I’.-.}‘.__l‘

  • :5?>Qg},_., -;'f:‘§i;'§ 03'‘F-\1""‘i 1Fi??"=“:'** 3'i'§*'r'=i'F=5="ff -\

¢ __"41-

—A.‘4»./.,-. ,.~ a::-;--1-..;-e-';*.‘-=:--‘.--1:Z:-=27.‘.~;i%;z'-~‘-t--.-‘--5{',7;:L

orcubicfeetpersecond,isdeterminedbymultiplyingastream’s cross-sectionalareabyitsvelocity. Table5’slargestriversintermsofdischarge. ThelargestriverinNorthAmerica,the Mississippi,hasadischargethataver- ages17,300cubicmeterspersecond. Nevertheless,thatamountisdwarfed bySouthAmerica'smightyAmazon, whichdischarges 12 timesmorewater thantheMississippi. Thedischargeofariversystem changesovertimebecauseofvaria- tionsintheamountofprecipitation receivedbythedrainagebasin showthatwhendischargeincreases, thewidth,depth,andflowvelocityof thechannelallincreasepredictably. Whenthesizeofthechannelincreases, proportionallylesswaterisincontact withthebed andbanksofthechannel. Thus,frictionisreduced,resultingin anincreaseintherateofflow.

124 CHAPTER 5 RunningWaterandGroundwater

TABLE5. World’sLargestRiversRankedbyDischarge DrainageArea AverageDischarge Square Square Cubicmeters Cubicfeet Rank River Country 1 Amazon Brazil 2 Congo 3 Yangtze China 4 Brahmaputra Bangladesh 935 5 Ganges India 1,

Rep

Russia UnitedStates

6 Yenisei 7 Mississippi 3, 8 Orinoco Venezuela 880 2, 2,

9 Lena Russia 10 Parana Argentina

ChangesfromUpstream

toDownstream

Oneusefulwayofstudyingastreamistoexamineitslongitudinal profile-sectionalviewofastream fromitssourcearea(calledtheheadorlieadwaters)toitsmouth, thepointdownstreamwhereitemptiesintoanotherwaterbody- ariver,lake,orocean >5,themostobvious

J].I Alongitudinalprofileisacross-sectionalongthe lengthofastream-upwardcurveof theprofile, withasteepergradientupstreamandagentlergradient downstream'sKingsRiver originatesintheSierraNevadaandflowswestwardintotheSan JoaquinValley.

4 Head//'

/"s E $5,

vaton

l\J Longitudinalprofig ._ EEi Ee Mouth _-. O "r"""‘FT7F 0 50 100 150 Distance(km) -,,If-F,i'''I, '1'*-. ._I-I -_; , ‘;,' '. ',,.~,;'\I.1'i: t‘I»r_‘I- " -. *g 1 '.

  • ,ii‘giri‘-.‘r-i.,’:-"-"_. 1* _____t‘H- .__‘ .{-

Plsb K‘-Rto-In Fresno, Q \“—-._-IXKCA. 1 it

-'-u____\ -/’r" "Fl-.‘_“=1-*/Ji‘

2,590,0I

.0‘ .3‘

.0‘ .6‘ .0‘

3| 0 750,000 21, 00 361,000 19, [)0 409,i[,‘ii M 0| [ll Iii .0‘

1 _ 1 ~-

‘F

"Igll

i I A _I _ I. _. .- i 1'll ~ I I I'llI' I - S i 7 r oi e. IT E l? I L in‘

_ \___ . ,/C - 3"“--t /0/7-9‘ I47?‘r

xi“ / -ax 1/ Kai /

F"--."“-. ' .. --____ -

kilometers miles persecond persecond 5,7'7e,00i 4,014, CC1,942,5i

0 2,231, 1,550,

212, 39,

7,500, 1,400, C 770000 700, 660,i§i0i§| 614,i§i|§|

18, 3» 1,000,000 17, :i 1,244,000 17,300 511, :i 340,000 17,000 2500 2 0 C935,000Cm 15,500 547, 0 990,000 14,900 525,

featureofatypicallongitudinalprofileisitsconcaveshape—aresult ofthedecreaseinslopethatoccursfromtheheadwaterstothe mouth,localirregularitiesexistintheprofilesofmost streams—theflattersectionsmaybeassociatedwithlakesorreser- voirs,andthesteepersectionsaresitesofrapidsorwaterfalls. Thechangeinslopeobservedonmoststreamprofilesisusu- allyaccompaniedbyanincreaseindischargeandchannelsize, andareductioninsedimentparticlesize 1.--Ir).Forexam- ple,datafromsuccessivegagingstationsalongmostriversshows that,inhumidregions,dischargeincreasestowardthemouth. Thisshouldcomeasnosurprisebecause,aswemovedown- stream,moreandmoretributariescontributewatertothemain channel,forexample,about1,000trib- utariesjointhemainriveralongits6,500-kilometercourseacross SouthAmerica. Inordertoaccommodatethe growingvolumeofwater,channel size typically increases down- streamaswell velocitiesarehigherinlargechan- nelscomparedtosmallchannels. Furthermore,observationsshow ageneraldeclineinsedimentsize downstream,makingthechannel smootherandmoreefficient. Although the channelslope decreasestowardastream’smouth, theflowvelocitygenerallyincreases. Thisfactcontradictsourintuitive

  • ‘I3*’ assrunptlonsofswift,narrowhead-

  • ' '_\I.. Mt.= .‘.'Whitney

-'_ ‘‘I.::.---ll?‘..-J 1. ,\‘..-',-1’&. r- I. '1 "Y _ r_. .’ §;. waterstreams andwide,placid .-I_,e" - riversflowingacrossmoresubtle I topography sizeanddischarge,anddecreases I ' 2 inchannelroughnessthatoccur downstream,compensateforthe decreaseinslope—therebymaking thestreammoreefficient.

/57-= -

126 CHAPTER 5 RunningWaterandGroundwater

TransportationofSediment

Allstreams,regardlessofsize,transportsomerock material transportbecausefiner,lightermaterialiscarried morereadilythanlargerparticles- porttheirloadofsedimentinthreeways:(1)insolu- tion(dissolvedload),(2)insuspension(suspended load),and(3)slidingorrollingalongthebottom (bedload).

Dissolved Load Mostofthedissolvedloadis broughttoastreambygroundwaterandisdis- persedthroughouttheflow dissolvedloadissmallandthereforeisexpressed aspartsofdissolvedmaterialpermillionpartsof water(partspermillion,orppm).Althoughsome riversmayhaveadissolvedloadof1,000ppmor more,theaveragefigurefortheworld’sriversis estimatedat 115 to 120 ppm. Thevelocityofstreamflowhasessentiallyno effectonastream’sabilitytocarryitsdissolvedload. Oncematerialisinsolution,itgoeswhereverthe streamgoes,regardlessofvelocity occurs onlywhenthe chemistry ofthe water changes.

Suspended Load Mostlarge rivers carry the largestpartoftheirloadinsuspension,the muddyappearancecreatedbysuspendedsediment is the most obvious portionofa stream’s load (Figure5).Usuallyonlyfineparticlesconsisting ofsiltandclaycanbecarriedthisway,butduringa flood, sand and even gravel-size particles are transportedaswell,duringaflood,thetotal quantityofmaterialcarriedinsuspensionincreases dramatically,ascanbeverifiedbyanyonewhose Wm homehasbeena siteforthedepositionofthis material. Thetypeandamountofmaterialcarriedinsuspensionare controlledbytwofactors:theflowvelocityandthesettling velocityofeachsedimentgrain thespeedatwhichaparticlefallsthroughastillfluid theparticle,themorerapidlyitsettlestowardthestreambed. Inadditiontosize,theshapeandspecificgravityofparticles alsoinfluencesettlingvelocity moreslowlythandosphericalgrains,anddenseparticlesfall towardthebottommorerapidlythandolessdenseparticles. Theslowerthesettlingvelocityandthehighertheflowveloc- ity,thelongerasedimentparticlewillstayinsuspension,and thefartheritwillbecarrieddownstream.

Bed Load Aportion of a stream’sload ofsolid material consistsofsedimentthatistoolargetobecarriedinsuspension. Thesecoarserparticlesmovealongthebottom (bed)ofthe streamandconstitutethebedload

ZF‘it‘%'iitTi§.i TheColoradoRiverinGrandCanyonNationalPark. Themuddyappearanceisaresultofsuspendedsediment.(Photo byMichaelCollier)

work accomplishedby a downcuttingstream, the grinding actionofthebedloadisofgreatimportance. Theparticlesthatmakeupthebedloadmovebyrolling,sliding, andsaltation(saltare=toleap) appearstojumpor skipalongthestreambed- clesarepropelledupwardbycollisionsorliftedbythecurrentand thencarrieddownstreamashortdistanceuntilgravitypullsthem backtothebedofthestream movebysaltationeitherrollorslidealongthebottom,dependingon theirshapes. Thebedloadusuallydoesnotexceed 10 percentofastream’s totalload’sbedloadshouldbeviewedcau- tiously,however,becausethetransportofsedimentasbedload orassuspendedloadchangesfrequently dependonthecharacteristicsofstreamflowatanytimeandthese

StreamChannels 127

mayfluctuateovershortintervals, partsofthebedloadarethrownintosuspension,when velocitydecreases,aportionofthebedloadisdepositedandsome sedimentthathadbeensuspendedchangestomovingasbedload.

Competence andCapacity Astream’sabilitytocarrysolid particlesisdescribedusingtwocriteria:capacityandcompetence. Capacityisthemaximumloadofsolidparticlesastreamcan transportperunitoftime,thegreater thestream’scapacityforhaulingsediment,large riverswithhighflowvelocitieshavelargecapacities. Competenceisameasureofastream’sabilitytotransport particlesbasedonsizeratherthanquantity key—swiftstreams have greater competencies than slow streams,regardlessofchannelsize’scompetence increasesproportionatelytothesquareofitsvelocity,if thevelocityofastreamdoubles,theimpactforceofthewater increasesfourtimes;ifthevelocitytriples,theforceincreases ninetimes,andsoforth,largebouldersthatareoften visibleduringlowwaterandseemimmovablecan,infact,be transportedduringexceptionalfloodsbecauseofthestream’s increasedcompetence. Bynowitshouldbeclearwhythegreatesterosionand transportationofsedimentoccurduringfloods indischargeresultsingreatercapacityandtheincreasedveloc- ityproducesgreatercompetency watermoreturbulent,andlargerparticlesaresetinmotion justafewdays,orperhapsafewhours,astreamatfloodstage canerodeandtransportmoresedimentthanitdoesduring manymonthsofnormalflow.

DepositionofSediment Wheneverastreamslowsdown,thesituationreverses velocity decreases,its competenceisreducedandsediment beginstodropout,largestparticlesfirst size hasa settlingvelocity. Asstreamflow drops belowthe settingvelocityof a certainparticle size, sedimentin that categorybeginstosettleout,streamtransportprovidesa mechanism by which solid particles of various sizes are separated,calledsorting,explainswhyparticlesof similarsizearedepositedtogether. Thematerialdepositedbyastreamiscalledalluvium,the generaltermforanystream-depositedsediment depositionalfeaturesarecomposedofalluvium withinstreamchannels,someoccuronthevalleyflooradjacent tothechannel,andsomeexistatthemouthofthestream considerthenatureofthesefeatureslaterinthechapter.

CONCEPTcnscx 5. 0 Listtwowaysinwhichstreamserodetheirchannels. QInwhatthreewaysdoesastreamtransportitsload’? QVllhatisthedifferencebetweencapacityandcompetency? QWhatissettlingvelocity?Whatfactorsinfluencesettling velocity?

Stream Channels

Abasiccharacteristicofstreamflowthatdistinguishesitfrom sheetflowisthatitisusuallyconfinedtoachannel channelcanbethoughtofasanopenconduitthatconsistsof thestreambedandbanksthatacttoconfinetheflow,except duringfloods. Althoughsomewhatoversimplified,wecandividestream channelsintotwotypes streamsareactivelycuttingintosolidrock,whenthe bedandbanksarecomposedmainlyofunconsolidatedsediment, thechanneliscalledanalluvialchannel.

BedrockChannels In theirheadwaters,where thegradientisusuallysteepest, manyriverscutintobedrock(oftenmountain streams)typicallytransportcoarseparticlesthatactivelyabrade thebedrockchannel erosionalforcesatwork. Bedrockchannelsoftenalternatebetweenrelativelygently slopingsegmentswherealluviumtendsto accumulate,and steepersegmentswherebedrockisexposed maycontainrapidsoroccasionallyawaterfall- ternexhibitedbystreamscuttingintobedrockiscontrolledby theunderlyinggeologicstructure uniformbedrock,streamstendtoexhibitawindingorirregular patternratherthanflowinginastraightchannel goneonawhitewaterraftingtriphasobservedthesteep,winding natureofastreamflowinginabedrockchannel.

AlluvialChannels Manystreamchannelsarecomposedoflooselyconsolidated sediment (alluvium) andtherefore canundergosignificant changesinshapebecausethesedimentsarecontinuallybeing eroded, transported, and redeposited. The major factors affectingtheshapesofthesechannelsistheaveragesizeofthe sediment beingtransported, thechannelgradient, andthe discharge. Alluvialchannelpatternsreflectastream’sabilitytotrans- portitsloadatauniformrate,whileexpendingtheleastamount ofenergy,thesizeandtypeofsedimentbeingcarried helpdeterminethenatureofthestreamchannel typesofalluvialchannelsaremeanderingchannelsandbraided channels.

Meandering Streams Streamsthattransportmuchoftheir loadinsuspensiongenerallymoveinsweepingbendscalled meanders. These streams flow in relatively deep, smooth channelsandtransportmainlymud(siltandclay),sand,and occasionallyfinegravel channelofthistype. Meanderingchannelsevolveovertimeasindividualbends migrateacrossthefloodplain theoutsideofthemeander,wherevelocityandturbulenceare greatest,theoutsidebankisundermined,especiallydur- ingperiodsofhighwater

StreamChannels 129

."--.::-%-——:;;-. "Meanders ':<~ Bgfgpe 1-be R as -- ~ -3,»)fqmmfivn 1; 570 “E cutoff ' __¢-1"

"" ( p gferrfge f I n

####### Cvw '"—~ C31’0‘l'f

r - oxbowl -

l

l ill l

Geologist’:Skefch

dumpedintothemeltwaterstreams flowingawayfromtheglacier- ever, when flow is sluggish, the streamisunabletomoveallofthe sedimentandthereforedepositsthe coarsestmaterialasbarsthatforce theflowtosplitandfollowseveral paths channelscompletelyreworkmostof thesurface sediments eachyear, thereby transforming the entire streambed, however,thebarshavebuiltupto formislandsthatareanchoredby vegetation. Insummary,meanderingchan- nelsdevelopwheretheloadconsists largelyoffine-grainedparticlesthat aretransportedassuspendedloadin deep,relativelysmoothchannels contrast,wide,shallowbraidedchannelsdevelopwherecoarse- grainedmaterialistransportedasbedload.

####### comcnrrcnncn 5. 5

QArebedrockchannelsmorelikelytobefoundnearthehead ornearthemouthofastream? QDescribeorsketchthedevelopmentofameander,including howanoxbowlakeforms. FIGURE5 QDescribeb _dd asituationthatmightcauseastreamtobecome occupyabandonedmeanders,oxbow ml e' lakesgraduallybecomeswampymeanderscars oxbowlakecreatedbythemeanderingGreenRivernearBronx, Wyoming.(PhotobyMichaelCollier)

Fin-i'_lRE5 TheKnikRiver isaclassicbraidedstreamwith multiplechannelsseparatedby migratinggravelbars chokedwithsedimentcontributed bymeltwaterfromfourglaciersin theChugachMountainsnorthof Anchorage,Alaska.(Photoby MichaelCollier)

130 CHAPTER 5 RunningWaterandGroundwater

Base Level and Stream

Erosion

Streams cannotendlessly erodetheir channels deeper and deeper, andthatlimitiscalledbaselevel straightforward,itisneverthelessakeyconceptinthestudyof streamactivity whichastreamcanerodeitschannel atwhichthemouthofastreamenterstheocean,alake,or anotherstream profiles havelow gradients neartheir mouths, becausethe streamsareapproachingtheelevationbelowwhichtheycannot erodetheirbeds. Twogeneraltypesofbaselevelarerecognized consideredtheultimatebaselevel,becauseitisthelowestlevelto whichstreamerosioncouldlowertheland,orlocal, baselevelsincludelakes,resistantlayersofrock,andmainstreams thatactasbaselevelsfortheirtributaries,whena streamentersalake,itsvelocityquicklyapproacheszeroandits abilitytoerodeceases,thelakepreventsthestreamfrom erodingbelowitslevelatanypointupstreamfromthelake- ever,becausetheoutletofthelakecancutdownwardanddrain thelake,thelakeisonlyatemporaryhindrancetothestream’s

1'i;>.;i111?. _ 5 .5Aresistantlayerofrockcanactasalocal(temporary) baselevel,itlimits theamountofdowncuttingupstream.

9 i";1;;in-: i lat’ , 3 5',-":.-3-7 ___ ,. ' ,_

-\ s “.;,;A;;n/4'//""/if ll _-__;’—_’;__’._»—>-'4‘; A, ' Resistantbed olnt M :11 E l.,= w r ts ‘|'l'l:I'-‘‘.

(.‘i | 7 .in‘.4‘ v’ 1 l 1 l-,.,Vl

l

i(l1;1,‘

lil.,: ‘l.,.,lll‘u

;.:;.~ '11.‘,--...’(:3;5-;.‘':1".'.w=-QL__lT.:-W"7?‘Z1.(J'.';‘.'.'»-‘.

‘.4 1 __a-3(Mfr\‘l»=n"-,|m,‘

-;,-=-

\1.:,1)‘=.~..‘

'.‘-.,-w|'l.-—‘“.2...,-'-w"',,-l-~-.,1_(lT'|‘.__\I(H...

{, m

Ultimatebaselevel Q

Waterfall ,,i=?Ql__,;§-"‘ 4,-.,. "A .'_ ~‘_. -E‘_*-'_Q 7 -"5,_—§ ~' ».---1 5 ____' . ‘~ ~--1 _, .1, --

'-(‘Sea ___r__f______________________l=<tesisranr-........

B‘i Fault e -

Ulllmelebeeelevel - _.;,-§E\ickpoint-‘ti. ---'.-- .1»- l ,.. ',..»-- '~--- 3;.-'.5- P —;;.

abilitytodowncutitschannel,thelayerof resistantrockatthelipofthewaterfallin .rr-Yactsasatem- porarybaselevel,itwill limittheamountofdowncuttingupstream. Anychangeinbaselevelwillcauseacorrespondingread- justmentofstreamactivities, thereservoirthatformsbehinditraisesthebaselevelofthe stream Upstreamfromthedamthegradientis reduced,loweringthestream’svelocityand,hence,itssediment- transportingability,nowhavingtoolittleenergyto transportitsentireload,willdepositsediment channel stream’sgradientincreasessufficientlytotransportitsload.

CONCEPTcnrzcx 5. QWhatisbaselevelandhowdoesitinfluencestreamactivity? QDistinguishbetweenultimateandtemporary(local)baselevel.

Shaping StreamValleys

fifi SculpturingEarth’sSurface mm9->"buZ-ln1IT! iRunningWater Streams,withtheaidofweatheringandmasswasting,shapethe landscapethroughwhichtheyflow,streamscontinu- ouslymodifythevalleysthattheyoccupy. Astreamvalleyconsistsofachannelandthesurrounding terrainthatcontributeswatertothestream thevalleyfloor,whichisthelower,flatterareathatispartially ortotallyoccupiedbythestreamchannel,andthesloping valleywallsthatriseabovethevalleyflooronbothsides streamvalleysaremuchbroaderatthetopthanisthewidthof theirchannelatthebottom t iftheonlyagentresponsibleforerodingvalleyswerethe streamsflowingthroughthem areshapedbyacombinationofweathering,overland flow,andmasswasting,where weatheringisslowandwhererockisparticularlyresis- tant, narrowvalleyshavingnearlyvertical wallsarecommon continuumfromnarrow,steep-sidedvalleys Rflljlafii '. -Eie.:-1i.-lwj-.~li%:. tothosethataresoflatandwidethattheval-

4 @ .T,._nLn-‘I’

leywallsarenotdiscernable.

1 _Sea ...--------e---eQ,,.I-1Resistantbed ValleyDeepening

Ultimatebaselevel ~Graded - - stream '

  • ‘ ..~ ~"-Q-Z- ,...,_____;-.:r'}...£--.:.:.a=._:-i;..---m---1'§._,fl: :;f;'.,.._ ". 5 ’ ' .'2--r.. .-;--.;;- - ""~-.‘.-.-.‘"-“rs-it :.'- -i5-tr’-Mitt:-‘ii-‘-:-1 2 I--:-‘ii;-"If?-ieiirt;.I..}"" -'1. " Y-:; f¥T'e'——--) .i?.‘¢il[ii-i"l'i.¥1.'iEliuiltl, _ ._ _ -;- ' iiit i‘-it:-.= 1 ii;ii-Ft:-'2i it sea w '5 "fFleSleienth5<;l—

~ l/Vhen a stream’s gradientis steep and the channeliswellabovebaselevel,downcuttingis thedominantactivity

  • A bedloadslidingandrollingalongthe bottom,andthehydraulicpower of fast-moving water, slowly lowersthestreambed

D_ Fault A

e isusuallyaV-shapedvalleywith steepsides

132 CHAPTER 5 iRunningWaterandGroundwater

  • ' --5-:1 ,="""'§_,-era-'-1-1.- arrow ___. 5-‘-§;§‘35=Z_i-=Y'1:-"--' ' i>1;-, -- ".-’' "E1,;' V-shapedvall' 1 -"2 re- --».if ;==i;,-;3~’- ___ .-.::,.-I-'-',1.' _ ' ',,,.---,,;i;:;:;1....':.-vr-.-;1;_._1$:'=-"'" _ _ -..';-55.-s-1*‘. __"‘iI""?:'-5-- .""- : - ';5==“'=';'='?°&#039;.=."'¢':.=H="

Depositional

Landforms

Recallthatstreams continually A —:—‘‘.e§.=---Z595»;-_‘,,.=r‘P r».-.=---_'. ".-.. PickUPSedimentin 0119 Part0f ‘‘ -‘'-"“§?‘.:§?i1::=é=7"~----=__-.;;-1;-"--’—=,.':.‘:='é"52-Laééi-|E§.4‘%%1i3é£;..=;§§;i*’::;-e"T"?-as'-.;..=—;';='>=e=:==,-as';'=='=3'§'=é£5_f§_Z7;-1-'s_j:;;:;I;';'-:.--5==.<.1;==-.;:<__'=:=;=;-;;1;,,'--:""'Ti;;-1§:;;.::.-;r.'a:%;;;-:.—."--,;:,,|''--:__="=-.....- "'=.-- V__fi,3:: "‘ ‘"”‘:‘—-~=“?¥Z;E!:'I'’=‘='eP=‘.\§§1;i‘.-=?;;;;;;:2.>;i;£§- ,2‘-F5.‘-‘T , ”==-=".j___jE theirchannelanddeposititdown- SlieOiefoslflll fig stream-scalechannel ‘"5;-.'f" depositsaremostoftencomposedof SueoldeP°S'§1Q;-fj__f.- =3‘?H. .-."=:- - ii_:::);€E£i£,..;e=o- I‘_-j-{ME_. sandandgravelandarecommonly 5 =3,.,.-".-'=#C-->='-"=;--§'-'-->-fie,,..-)"_ tI?“--->.--r?‘",-..=--<_"-I-."—l'-.<'1..--'. -.- ,1- lg_‘ -.-=-.;,

iT1i'’..‘:::F"i:'I'l'_‘."":-‘'.Y-.;:::'.-§:".‘--».-==;; 1 .--I-“If.:;I'{-:‘>g£éF'1 :?-; ,1‘5'-‘_-:. - ,5.‘:1Ir.75%i.'5"7,1,,35:'—r":1-'§€'--:,-:'5‘: '7‘'.'..if;‘:''.*?:;-""';‘:3i;‘€»:'g»'-:''.-->5-l7:'j‘;'v'--,:=.-_ 5 i'I_;:,,¢-_.-itI".-J’:j",--,-T'“"-."‘,1"?;'-75:-1.-.'.--‘E- -., 1 324%‘:F’_41!?-iF_“:51;:i1£§-:1:'=i*=!3j=“L*'‘-5-’'3i"'1."-i‘_-E-Z335;---.-I ;.’--515-¥=:-':1F’ ’-r..'=J-' 1 -',.;51: 1;’ '!";T':-"3'3:;'“-It-15--'—$--‘T-1 ET‘T; ‘I’--51-1- - ;$—- %

’JP?“_1’:-" .'E"=>'—-.._E-,_'.--2--';-__'. '.-,-.—J3_'.>-5:1x 3 ‘L;1;Q=.'-'=—__E‘.<:';."--''-;¢-'-_5;—=-:.§s=:r.'\1¢f_-§-e_e=-~11----E’:"'-I3-I‘ ‘_'—-p—:=¢»:,.’>;;»--"l.=.-"“ 1 >§-‘l‘-.-z-:-:-1-—.-‘-==e-' ~ .“,'f;."-14'.-F£.;é'fL__,<--r—-'--'- '- 5‘ 5 .,-..,1,‘__A_L;-...—.:;--.-.-}¢.' §__.“,.,¢,A'=:;.“.';;==.=--=54 5 ;-;-,_,“'E:fg—-5-;,§—_,,-',-:5.___9;;*,_“j -,

,t"”1-:i',-_<'.-Iv._ .:..»-’-'-"'?.‘--;-5-—-L1"_"-“'1'--->15!-.-¥.==_;Y‘1‘1.--=,,:-<::'-§;:a-'.,»’¢'-=.-=--&lt;*5-@=—;.{;1"r7,:---:1--:=,;;'“."-.'—'—',.(,.a--.-..-,-,,~~::::—-1._____.~;s,—‘-,-3»;-.,,,,-:=..*_:.;~.';--.7.——-.,__..-er,==-3’-._?:;_jf..-'.-”—$%;£s:'':_ '-; I:.-..- - ' i-%s'-:5‘""'=-'»>-'.<"?i‘F.=¢'¢-":5"er--.+_-e-.-.-is-<.--re,ti“;=-?''==;.;-%§' —'1Q1'1:5'.-—'.-T=-‘5E;'i3*-?---as.-"'* f=:""-:e;».;:;@ ;;>1-;.-'_. ' E _ -»=-is-¢1'?:~=§"‘--=-i:?.,":‘_:.-:-;-:""=''=''--=:-.,-seei--re5;i:—'4—=r§i:’¢:-;i=.-->5,-as;..;>sV,r'=';r-. 4 .er." -t'€:>:5.,~. Floodplain I -2:T’.u-’.;-..;£--.-':-?5:“<:;'=1-> ’ Wwelldeveloped-my -""i55;‘:5-‘rfifl3* 1 --.- 5--ti;-'"?'--'7L“:-2-.."-.'-Fin?''3"-T-"F.'\‘.I..“"‘Z'r'""=’<'r‘~~——-- .--‘:-' :5:4;--'-‘-....-5-».1‘- .'1T"'.;.“.-"1‘-.":"'.'.:‘-Q-"—u'.-'1-.»V'.‘a--j-'4'es--'‘'5'','"'-'-**'.:‘.',_;‘.~’;=>If.;./;-.-‘*1,--. T--"5;--4’ TC" ."-—''"'..-."Y-_:;fii“T-1'"‘'-"= :';;:E-li.- f'911'?’-*‘~-'1--'1:'//3'1"v}"'“-"Qi-‘E.’-»..;.;§;".:-‘-:u.?.f:.|._¢.-l-§:-<,-."1'-»----.-1.-.-—-’'‘-1;‘17'.-E;Fy---'-"=‘-“Li-*=‘r-..=Li;-e.-3-4:--..__‘‘':-‘-~;;-‘$1;;-:'.. .if"?#53:.-M-I- —-1-‘.-o'~D;z.=£::§--:-=----1» ’-"1->4‘-"."..-Z§.:r,'1....-i-.- I 1 I''--.''--‘-:33-1'."-."-s‘--- .-.'.._=.'sz=:-.-‘-'&quot;‘.- -5'-'.-'-’ ' _.'r"-F-"J=:'-''--. "--.-:-file" ' ;;’;:;::=-=._ -,"1?'J‘.‘-3''---.-pF'''€‘1§-,5'-"‘-'.''p_‘»"--I-i=-=.''' --5’-.='*_'--?1----‘I -=-.‘_ ,.‘T'.-..,,;.->--__:..+aF _____ .- " -5a:.2<:''‘.'%§‘..;;:;-,—_i".. -k:1'‘“--'’1_-'--'eJ_.._Li‘..;‘.'‘"{—~"-—v,, '. ..-:-.”'*'-.’-1q.—_"''’4"‘_|.'.1--' "iii"___,-;'t_r.'-§§=’r*-=;::-.--__-"

  • 3;»-.-'-I(F--' --''-''- -' 1 ~-. .;‘ >--.:' I.-."'-.,.--’_-4'' "'1,r.".-w—_95-5*-?£.L,;;-=-.--=-='‘=T 1 -- _ ¥. ,.

l"

5,,_is:j+§f~l;-'.,,;;:;'i,=:;€;;=..,'£2:-,:;_:T- -'-::,‘:f-“'1---‘9§'3"W*?"’-s_1_§;.'<»-P91"1.'f_-'.'.‘.''=<"‘I-'".'-'.’:.'==-ii-§":4-'",---»"i-l..-'.-f,--'',,--r:'----Fe 1 -.-"r--.’~"":.'--r.'---;I-I-J___.-;;,;:;:;;;:r_"-',,1-»31,,--bi.‘ - E1-=;:‘;:,,in.J'-‘es,-=-;'-':5:;';'--=--=1’-.-is_7;ta1‘-v-5:’-=e‘=-';;-~;:;E;::=si§::,‘,j='-€~1='-'*s=‘=‘-""ex‘.-.. --._,1:. .,::_L ’..,.,,e,.-"_-''r,:T-'¢—‘:i- -.'.,;._—-'.-.'“J;-"=--.-_._. .T.__]_g+-1I2-‘-F-'--J""‘-57"==-"‘P.‘--'-4.-—. _‘

  • ‘-'- - -F"--'—'ma;-”-;=e_'5».>.—".<.‘-e~.—...<>s-L-1-ear...-as-er..;::;:';?%§E1:':;”',-/5,,,,->1S;.-;‘gin»’?'¥“’!,-',-'~=-:.=-.;.--;.:"33-1;.:,§>-‘$3"F,‘§:3}-,:__..-.--.,-';;-g--____-'— q.-0 '-1--’:'-‘av'-g___<=;-'-5:-‘T’:-:’:;,¢;=—::;;;:.:....-’,-I1'--:-L‘-1;2., .-- CI F-.;...?.-.-ail.,:(V)§.<'(,J_<:;.;-_;=3.._¢—-'|_t ‘fr-2,,5:.<.>._.>“'‘_7..;7<:,-‘§,_‘_§_f_‘..!__g;e(.-isgjéfg.3?,;€=:€J-_::;§i"'3§§E‘f"‘:%>);',.~=-:>2;7%:2;;:5;;.I-b,:,,___ ::.; 5 . "-l'TZ}'?-'.;'¥5a—--T?-1.-A:-,.,,,:.;.--=FP’.-.:5:y’<'Z*.“-:Q§"-=-=--‘21:--as-Es::;%;:‘-é-‘:1eZ.€=2’=??'=¥ -.--."'_' --if'.=;—_“:r,.,-:1:-"*i:¥_‘-';1;.*;-’;;__,>1‘-.;

FIGIJRE5.

ChangingBaseLevel

andIncisedMeanders

Weusuallyexpectastreamwithahighlymeanderingcoursetobe onafloodplaininawidevalley,certainriversexhibit meanderingchannelsthatflowinsteep,narrowvalleys meandersarecalledincised(incisum=tocutinto)meanders (Figure5:19).Howdosuchfeaturesform? Originally,themeandersprobablydevelopedontheflood- plainofastreamthatwasrelativelynearbaselevel,achange inbaselevelcausedthestreamtobegindowncutting eventscouldhaveoccurred uponwhichtheriverwasflowingwasuplifted. AnexampleofthefirstcircumstancehappenedduringtheIce Agewhenlargequantitiesofwaterwerewithdrawnfromtheocean andlockedupinglaciersonland (ultimatebaselevel)dropped,causingriversflowingintotheocean tobegintodowncut,thisactivityceasedatthecloseof theIceAgewhenicesheetsmeltedandsealevelrose. Regionalupliftoftheland,thesecondcauseforincised meanders,isexemplifiedbytheColoradoPlateauinthesouth- westernUnitedStates, astheplateauwas gradually uplifted,numerousmeanderingriversadjustedtobeinghigher abovebaselevelbydowncutting.

concern‘cnscn 5. QExplainwhyV-shapedvalleysoftencontainrapidsand/or waterfalls. QDescribeorsketchhowanerosionalfloodplaindevelops. QRelateincisedmeanderstochangesinbaselevel.

T referredtoasbars,how- , ever,areonlytemporary,becausethe M I materialwillbepickedupagainand eventuallycarriedtotheocean- its I tiontosandandgravelbars,streamsalso

  • createotherdepositionalfeaturesthathave asomewhatlongerlifespan deltas,naturallevees,andalluvialfans.

Deltas Deltasformwheresediment-chargedstreams entertherelativelystillwatersofalake,an I inlandsea,ortheocean(Figure5).Asthe stream’sforwardmotionslows,sedimentsare depositedbythedyingcurrent outward,thestream’sgradientcontinuallylessens. Thiscircumstanceeventuallycausesthechanneltobecome chokedwithsedimentdepositedfromtheslowingwater- sequence,theriverseeksashorter,higher-gradientroutetobase level,asillustratedinFigure5 main channel dividing into several smaller ones, called distributaries channelsthatactinanoppositewaytothatoftributaries.

FIGURE5 theColoradoRiverinCanyonlands NationalPark,Utah, themeanderingriveradjustedtobeinghigherabovebaselevelby downcutting.(PhotobyMichaelCollier)

DepositionalLandforms 133

I’ _ Distributaries rt’ V. I. '. Q'F,'! ,- -=-—-' Topsetbeds , .- ,_,

:_1..'t;7—“'5'F'*-1-?->--_ __ it>______ --'H '—'“vi! __ - --‘f---_.' f . >'_.=‘.=-F;-325;.--'.1. =;;-:. "‘>—----?-‘?-T-,It:-:1:--<..:-;-;>-‘T,;._-'=--__--;;-_._‘:-—,__::1_‘__-_:‘—?h. , _‘-- 7 5 ' _ .- F t 4 _ --,-1-==,?-;-_.¢,.»,=;-.-2--- |'|_ - -..,_"'-\--,_:_‘_._“_‘__\‘--__‘-‘.._,-___'-__"‘--:‘“-_*-"-_;‘-,“_‘__:_H__k_r_;, _ 7 'r'' S ...—,:'._?._§_2. I,"' '7“';=--1-l"‘_-'3;->;1--Z:__L':£‘' ' ' '-"1">---'-'--"-.'_5?‘-7.-*_-if'--1---‘-‘.— 15;‘--~_“-.-Q—r—-;‘-J‘--‘.“.‘--..'---_‘--1*'-_‘—'\wt '.-5?I1.-"-¢—;.'-*:4.-3?J;-;% —-7, ~—:r,—_i'-1'-1----T’T__“LJ“-.‘I~Z--2"-.,-__ ~--; 3'=--,.».-=='1/ A. 55 - g. it-t Bottomsetbeds/F? I.

B... -'15:--; A relativelyquietwatersofalake.B astreamextendsitschannel,thegradientisreduced, duringfloodstagetheriverisdivertedtoahigher-gradientroute, forminganewdistributary,abandoneddistributariesare graduallyinvadedbyaquaticvegetationandfillwithsediment. (AfterWard’sNaturalScienceEstablishment,lnc.,Rochester,N.)

Ratherthancarryingwaterintothemainchannel,distribu- tariescarrywaterawayfromthemainchannel shiftsofthechannel,adeltamaygrowintoaroughlytriangular shapeliketheGreekletterdelta(A),forwhichitisnamed, however,thatmanydeltasdonotexhibittheidealizedshape- ferencesintheconfigurationsofshorelinesandvariationsinthe natureandstrengthofwaveactivityresultinmanyshapes

largerivershavedeltasextendingoverthousandsofsquarekilo- meters(see Box5).Itresultedfromtheaccumulationofhugequantitiesof sedimentderivedfromthevastregiondrainedbytheriverandits tributaries(seeFigure5,p).Today,NewOrleansrestswhere therewasoceanlessthan5,000yearsago. showsthat portionoftheMississippideltathathasbeenbuiltoverthepast 6,000years,thedeltaisactuallyaseriesofseven coalescingsubdeltas channelinfavorofashorter,moredirectpathtotheGulfofMex- ico anothertoproduceaverycomplexstructure, calledabird-footdeltabecauseoftheconfigurationofitsdis- tributaries,hasbeenbuiltbytheMississippiinthelast 500 years.

NaturalLevees Someriversoccupyvalleyswithbroadfloodplainsandbuildnatrual leveesthatparalleltheirchannelsonbothbanks -: *- ‘ti 1).Nat- uralleveesarebuiltbysuccessivefloodsovermanyyears streamoverflowsitsbanks,itsvelocityimmediatelydiminishes,leav- ingcoarsesedimentdepositedinstripsborderingthechannel thewaterspreadsoutoverthevalley,alesseramountoffinesedi- mentisdepositedoverthevalleyfloor materialproducestheverygentleslopeofthenaturallevee. ThenaturalleveesofthelowerMississippirise 6 meters (20feet)abovethefloodplain- acteristicallypoorlydrainedfortheobviousreasonthatwater cannotflowuptheleveeandintotheriver

Duringthepast6,000years,theMississippiRiverhasbuiltaseriesofsevencoalescingsubdeltas numbersindicatetheorderinwhichthesubdeltasweredeposited(number7)representsthe activityofthepast 500 years.(ImagecourtesyofJPL/CalTech/NASA)Withoutongoinghumanefforts,thepresentcoursewill shiftandfollowthepathof theAtchafalayaRiver somedaybreakthrough(arrow)andtheshorterpathitwouldtaketotheGulfofMexico.(AfterC. R.KolbandJ)

eqolv’

W

‘$2’ 19

BatonRouge

83;p pl F?_

1 5:_é-1‘ i CbQ -_5li"-'-

"-._ '5:;¢;.I‘ 3?:*2'1 .: Q:2) 5 ‘:. 5 '._-‘

GV QB

l % l 1. 1

. _.

4??s E a Q9 *4’ ll Q’“f _

Gr __New rleans Fag?1'}<>

Q ‘* Q

. I as

' Q? - '»'."'* ‘ -3- .-=»* ’*-. 5 d Q I ' ‘—_ * ;r--".3' X ,' g_—-\ A Q, ."‘.‘°' ‘ " .' ' 1 “xii*'- 1 - this2'-' ' .";-|.--'~ &iZ;-P“.-= .‘ Y 1 l ---'-,"= //£3’ a

I g ’ 7 , Q ? I’ T6.

"-'92?'90.,

‘Qn

.9_.

WI -=.~ D 0 qr’

‘I‘dAF?“. - .‘I’ “FLq]&quot;“'— ' 00 D : ‘ 4 ,

QI _ -L’./.-KwQ/"‘/_/r‘-V. \ { E, F“‘ -.-a.

-+ ‘ =.-?'r-.-12'.‘Q3-;=“-.

“C

Jar/0..

iv‘.-11.‘;/A-‘IQ L. 4‘‘L/in

~g. i -.

U " 1-..’-k“V“ ..-;<~é‘-‘"1.. ‘

is-,~4* ~ _ . Q .-

ewe "...___.'_. 6

\

~.§;~°,IQ._’°-"3'0.-"I-4,’

Qv..../Q1./' if.“,_ 71 pk‘'-_‘

a.

‘-'_ GulfofMexicofi "

7_"‘:gLg; = -2‘vi‘-‘l‘ ;-;“'f1???"1E'i- ?‘?_\i.'. S3%’37¢: ‘I'..__‘' __. l :5) "““~‘'5-=-=--’- ;-t-5*" k&quot;"fir-ijlffiflu‘Ii‘ff“.?.l° 2 I’' 213.I- -f --------- -GulfofMexico-. ' ;-- -*‘.,.»,.».‘ii.'-:;._¢. --;:.:=:P . ‘ -' L‘-$s55""“ -‘- ' - ' r ".

4".-r4%»:&quot;n:&#039;'Qir.?£1?"‘jM- as1% -U/"

W. I'&#039;
V'- /;§'%'>’i..,,:..%";;-'_§-1-,.

X-‘.11's-;"

DrainagePatterns 135

vfiley .- £,.,_.__. _ " it--andHFl*c;g2plainmq Coarsedepositedsediments Finedeposit?eedinnenie H. .. _ _. f -.-. 5. I. _. \

1-‘ _ --= E ,,_____,,,,.__ '--6)-4 ';-“BackSwamp' .- iif‘ ;,: 5.;->>,-, g. , -_I--' .' ---....__'f;'.1»?I-I '-<"-----,-"M-=.=---.......‘.-;_».".5'. ?'.=.-- ' '',- '-.-. {=*£;'*’ ,1?-1:r=;**.;;..-ii-"F-=-_t '5l.-T3?--1 ‘ 6'fl' f‘ ~ c if ___, ‘er " Floodsta e ._i--I .-a:;,.',.1.“t“'""'“°¢L. ‘ T" I.‘ I»F’ 5 "‘&gt;=€IfQry'- ~~--W ~; ~

    • is ***----4 séim I _. Developing

flint

.) g F in-"‘__-_____;L;;" ___I -H.‘ ‘

  • A G ' "t — '“,/;;;@#;Q._L_M " naturallevee

g-‘2:.F‘ _ _";'-'.~>‘-""='- ‘:-':';1 --- ---. . ..*-‘I-5-, 2 == is ,..— .:-'3»7---2>I'-.::.<;:--—-.-.---.~».*-'-..,.-11-".-' ..._.~_— 1 '.’".---__, -. ,.1..—_4.- Coarsesediments - - Finesediments q _h Poéghioé) G

4? ll“““F'°0dpiam

####### -

-uu ; -- .fp- -.‘ ' ~.,-_,_‘ / - h- '- --E15?‘ _" 7 -.-1.--‘J:_ 'ii @3.".E-I= ;-L Floodstage . K‘ ,1'I-_ ‘*4, "I"; .‘:4 .“UiqH__w"v-.-MIi II:

  • .. levees 1 * .;_ I -4-..- -anE’ 5 ,- Naturallevee . I — -.L_____l,\ “''j~ 5 _, I-t’ -* a. -.. , 1 “‘r----4.-..-.. _.,;-e’

-f ._ " ’ er I

Coarsesediments FineSediinenie deposited G9pOSliSd 1 - 1 M‘ ~ i,_ , k.\ Aw " " _ ‘V l

E ii.. 5 ‘ “''I‘:1III;'.'

LI. 117‘Il.)IW,I '‘I:l4:

.... "I-‘‘1,..,, 1 .‘I....-I.‘..'1;W‘I’I"JV.‘3,’.‘,iI'rll,#|J-,.,(ii'1]l|l|I-‘I.-‘IiII.:i'9liiii,,iA‘-M“ii‘i-,i-|I,,.,,..,.,,.,l.."‘..,’.I;;;.',‘ 0 -I-IiIi,,.‘..‘-Q,'_‘I,'i,‘,“,I.I‘i',,,

V, ‘vi ljll-._ :,_,,....,,,III‘vi-..,I,,|i._,.,|.',.

..-. N,i.,,.I,...-,,.|....,.,.,-"ii-i»;».:I-l.’.-,‘.,-.§.I¢.,,;,i,-,1I,,I,Il,.,.,._,....,,1-_‘I;.,i\i..,

-I l‘ft,‘ll\I,,.‘.l_I.,-ItI}.q...“,2.,|.i~.IIIII...,‘-I‘n-,I..-,‘I.,Ii ,i..:._...,,‘‘ 'II:.l'IlI,..,.“‘,'-._l. :1.‘I..

“Ta

<:'< . ' ’ 7 ' -' ix‘T I__*T- --~ ‘r-_ t 4" ’F-'.- Y-vr—--‘--;.,'¢§‘-¥‘:§:§1"5'. i 1 .—---=—-<'—r‘.‘‘E3’;“’=;i."!'..»é;-1}?‘'?€:i5-:-itr:.'-‘—f’--' ”i':.:I'-7->3-.--Fl:-'§t:>rE--L-;'--Z"5‘_1''='—'’->4»-1-, 1 ;, -~ ‘I --:"i‘> 7€i~:***.I£‘;,;;;'->27. ":1 4 -'-‘. ..,;1j:>-;§_j‘ .,1. , 5;-:1:j-1;llll if.‘7'!.,. Naturalleveeafternumerousfloods

-";-iti%;é.f-if-ii Naturalleveesaregentlyslopingdepositsthatarecreatedbyrepeatedfloods ofdevelopment,backswampsandyazootributaries maydevelop.

backswampsresult becauseleveesblockthewayoftenhastoflowparallelto the riveruntilitcanbreachthelevee tributariesaftertheYazooRiver,whichparallelstheMississippi forover 300 kilometers(about 190 miles).

AlluvialFans Alluvialfanstypicallydevelopwhereahigh-gradientstreamleaves anarrowvalleyinmountainousterrainandcomesoutsuddenly ontoabroad,flatplainorvalleyfloor(seeFigure6,p).Allu- vialfansforminresponsetomeabruptdropingradientcombined withthechangefromanarrowchannelofamountainstreamto lessconfinedchannelsatthebaseofthemountains dropinvelocitycausesthestreamtodumpitsloadofsediment quicklyinadistinctivecone-orfan-shapedacctunulation- tratedbyFigure6,thesurfaceofthe fanslopesoutwardina broadarcfromanapexatthemouthofthesteepvalley, coarsematerialisdroppedneartheapexofthefan,whilefine materialiscarriedtowardthebaseofthedeposit.

CONCEPTcnacx 5. QWhathappenswhenastreamenterstherelativelystill watersofalake,aninlandsea,ortheocean? QBrieflydescribetheformationofanaturallevee featurerelatedtobackswampsandyazootributaries? QHowdoesanalluvialfandifferfromadelta?

Drainage Patterns

SculpturingEarth'sSurface

mm9:6“"'112-ha?nu:ITI PRunningWater

Drainagesystemsarenetworksofstreamsthattogetherformdis- tinctivepatterns fromonetypeofterraintoanother,primarilyinresponsetothe kindsofrockonwhichthestreamsdevelopedorthestructural patternoffaultsandfolds. Themostcommonlyencountereddrainagepatternisthe dendriticpattern Thispatternofirregularly branchingtributarystreamsresemblesthebranchingpatternof adeciduoustree,theworddenclriticmeans“treelike.”The dendriticpatternformswheretheunderlyingmaterialisrelatively uniform itsresistancetoerosion,itdoesnotcontrolthepatternofstream- flow,thepatternisdeterminedchieflybythedirectionof slopeoftheland. Whenstreamsdivergefromacentralarealikespokesfrom thehub ofawheel,thepatternissaidtoberadial(Figure5). Thispatterntypicallydevelopsonisolatedvolcanicconesand domaluplifts. Figure5,inwhich manyright-anglebendscanbeseen whenthebedrockiscrisscrossedbyaseriesofjointsand/or faults unbrokenrock,theirgeometricpatternguidesthedirections ofvalleys.

136 CHAPTER 5 RunningWaterandGroundwater

J 5 '1..-1-E.--‘*9 -_ Ha tr4-Wr‘.-FI'<_ V‘-:; "--1-- . !j;.,;_ z. .___x M ' ‘“ -.-.-.---i,3’ _ -'.—-'-$-=-‘_i=‘_;-:--..-‘r-*1-'§=:=‘\€:§-“i-- ir we I-'-‘..“.

  • ii-.~

\I’h‘__, 1-“‘.-5._-F",r~.‘Iigm.‘.‘FT-Iv it-.~.:15:-.-‘.-".;-;‘_V-.-1.’.in’.:1-".»Wa-1,..

J’.~.,-;, w»-"‘1;:;1i_'*r,:'-if'.__

'.1’.
"'1'""-''.,.W. .._,--_¢:'Y‘.-§.'|'WI.“M,-.|.|..¢.|If

.;,.i<"'.'-;_.'_‘:{.15, -..':-"_ 5 ".7‘I /.

./U z'.:=e;.-s"“""""""'-

'\v__ I-.__{Z

_r"“"---_r‘ _, '.
kl», 1 'l'*~.______.

/'",1“

LAY-l. ~.

um‘

‘msR‘...

‘:..,,___%“

v-.,,__ “n-. N5'l___

-."-.-.-L‘

..-..¥i‘F,_

.r"L..¥!

“‘1-

.Q-u 1% 6 -_ '.; Z - §_ I . .,;:.--_ _ _I ‘J 4 v

‘W4‘‘ w,-.-‘I._r'-'l|.'‘L.-V'- 1 _‘.-*"-at 1 I|4-I-V‘J

4'.- ‘1‘-..'".-"'&#039;,'_,..'J'..'nt..,_.,,__. '"*-5’--'-1‘

I-1‘H"FT."gm"IItJ;'.lW' -I’-, '"l.'~¢f"»'I. *;‘l'. IKr Irhr'.Ar..,_.,.‘- - ,5‘Hr‘.-‘-3.'1"0'1?’'..‘‘flit

  • ./'.»?-- ___,-’--...-7'",

—limb-_-.--"d..,.;-;.=: -.-9-‘F..__h

=..~,_€ r'"R-r

~ \I ._ h ==?Q-we->:= , _v. 1+. i'~$a =-‘ 5. _ Q7,1-3:

  • -'14:!-": itg.. '‘-111--.. :7flr Lgv.-njg "gQ.= -,;-1;-.,-Li‘ .§‘ :7 . Q _ "-I-r:;'~::T ‘fa.';:;*,' -'" -. - -.',1_‘ 7 ' ‘ ' “.:-.*.- Hf.' I.. ' ta-‘-1' -‘ I--1F"..-i ‘ r-.-; __ ; -.>§_j;~.=-.;_ /I.-, A .__,,;. developsonrelatively -'‘ uniformbedrock

‘P

if

"-._'-'"—--,._."---.-. :1'-' .r - -. ?“"-r-. J I,.--">.,.' .g -==:--,:+ -,-' 1'.1- ":3.’-. .'’ -‘_' t:-"'3.‘| "- - ;.-.' - 'ii‘ 1;Tar ‘fr;.; -'. .' IE:2".31’ »-|-'1 fl1-. E. _ | fig‘ __ kg 4 ;.-J"-'. - r .r,1; r 7'',\3- ,Q''.-'4' -5'if- ,;."'fl‘. ' ..,1.=I. ,.Q A._,€,;h""2 1 1.‘;--:,>1.‘-'»:- - ,» .-- g -. ,’.—'r‘-1-"-:1_‘E“;-l_§"11f':‘;.=—:--52*"--1*.=-ii-:-.-~v‘,'-24-»--2;‘---. .4"1-. p.—-*'I' :| ~.;_~;=§_,;r;":q4.;‘_‘--.+-<1:--.,--;--..-__§.—_-—:*_-~&quot;"-.—,--1-.~,-g,-2-.<3~-;.-—-.='.jf-.-__"r-r.-i*._-.;_‘_’'--,;'-=--___-=-::§;-4--&#039;----.,_g'-‘—.§*_;--===-a-?*>,,"“*'1‘_'_'1->‘-.-.—'1:“.‘1-?-1..._',“-P-''.- .'..—;_.'='-J; "" .1:. ""--‘"' I:-.-.‘:-.—*--=>---:-'>:i.;-'.__-a-’'':_;'-=.#1-.;'=-.-.:‘_‘,-T-,__-‘I_5.-".-.'.-.:_=t-'1--"“<1?;-'_---.=—-__=:;-1‘.‘=-":-e.:-1-.-_ --..-;€_ .-P.-,2'! » '" 4 ‘Y- -- _-..-5| J -‘ C ' developsonhighly " jointedbedrock Valleyscutin less-resistant .-’..-0.... IT_.‘-Q“. 1 ..=.--1.-..-f':;--,,_ rock a - = ,..- Ridgesof .*--rs-K.-Er-"i-*1»§'--.‘=f ".-.,,Q ?§,'\s---aw—~”‘H4 .. ~ _ ' )'1'.-ex:-!'i§"'/ '_s--_’;'f>;'

pr‘

Volcano

fg ~94 ~- I B '-“E 14 ';

_i Jr ¥

resistant ii g-‘.51g 4 ‘f~ -Ir gljifa. 1 l"5“‘v-Zr;?:> -':.i_Tin-'-.??; rock I I 7 ' -LJV‘-(I 7,7’-I > .;7 '-I‘;| .. I /. \ ,'..‘l F lH,. ":;‘vf;r.;.'-I‘v-,..;_:-I.., ' --’ 1 7‘"", --''r-‘__..( ''— "‘1_i'f'‘ -1».. - 3. Hm. _‘ '-s~.-r.=i"-s=;- _-‘:1; - -- q q » ‘ r

    • ,’. ‘.-T»''F_ 6'. Y, 1;..- I It - . ..,1,-. I L l " I7‘ .'V' ~_i'is’-I‘ 'E1..»~ . 5 /lg‘.-ff I iyflI 3 ":51".=:""‘l -.-V2. 4 -' (j - '"1 K P .K-' -3-’.ff ; i-1-;-=55._l...--.%~'5§:';"§-'f'|f‘:'’_7;-’'-_.-I P-e*::;;_:‘:3';.-fin-=.;,,,,>v‘—1=;->£\“i.\‘.,_.-;.g"¥;' r ’._‘ .‘-4’A....... r -f-"';’ { r —- --'-__>_’‘--’" J: ",---..---'{'‘-5%-1*-_,.»-;g;.-s.,_v,-T..--',-4->.‘.,--,-., ‘_ -I2)-= ,..-£51’-.. 1 H 3
  • iV ’ -_, 1 .-- -tP1:' '15. - D 1 "i '. .=:’7/ developsonisolated F i‘- ‘= a devempsinareasof jr volcanicconesordomes alternatingweakand resistantbedrock Drainagepatterns.A.Dendritic.B.Radial.C.Rectangular.

Figure5,arectan- gularpatterninwhichtributarystreamsarenearlyparalleltoone anotherandhavetheappearanceofagardentrellis formsinareasunderlainbyalternatingbandsofresistantand less-resistantrock.

CONCEPTcnscx 5. 9 QMakeasimplesketchofthefourbasicdrainagepatterns.

Floods and Flood Control

Whenthedischargeofastreambecomessogreatthatitexceeds thecapacityofitschannel,itoverflowsitsbanks asaflood. Floodsareamongthemostdeadlyandmostdestructiveofall geologichazards. Theyare, nevertheless, simplypartofthe naturalbehaviorofstreams.

CausesofFloods

Riversfloodbecauseoftheweather thespringand/ormajorstormsthatbringheavyrainsovera largeregioncausemostfloods 1997 floodalong theRedRiverofthenorthisanexampleofaneventtriggeredby rapidsnowmelt intheupperMississippiRiverValleyduringthesummerof 1993

Unliketheextensiveregionalfloodsjustmentioned,flash floodsaremorelimitedinextent warningandcanbedeadlybecausetheyproducearapidrisein waterlevelsandcanhaveadevastatingflowvelocity- torsinfluenceflashflooding andduration,topography,andsurfaceconditions areasaresusceptiblebecausesteepslopescanquicklyfunnel runoffintonarrowcanyons Urbanareasaresus- ceptibletoflashfloodsbecauseahighpercentageofthesurface areaiscomposedofimpervioussurfacessuchasroofs,streets, andparkinglotswhererunoffisveryrapid,astudyindi- catedthattheareaofimpervioussurfacesintheUnitedStates (excludingAlaskaandHawaii)amountstomorethan112, squarekilometers(nearly44,000squaremiles),whichisslightly lessthantheareaofthestateofOhio. Humaninterferencewiththestreamsystemcanworsenor evencausefloods artificiallevee. Theyaredesignedtocontainfloodsofacertainmagnitude largerfloodoccurs,thedamorleveeisovertopped leveefails oriswashedout,thewaterbehinditisreleasedto becomeaflashflood 1889 ontheLittle ConemaughRivercausedthedevastatingIohnstown,Pennsyl- vania,floodthattooksome3,000lives occurredthereagainin 1977 andcaused 77 fatalities.

TC,etal.“U,”inE08, Trrmsacrions,zlmericrmGeophysicalUnion85,No. 24 (lune15,20

Was this document helpful?

Chapter 05

Course: Secondary education (bio sci)

609 Documents
Students shared 609 documents in this course
Was this document helpful?