Skip to document

Data Communications - IM6

Computer Security is the protection afforded to an automated informati...
Course

Electronics Engineering (CR 061)

95 Documents
Students shared 95 documents in this course
Academic year: 2022/2023
Uploaded by:
Anonymous Student
This document has been uploaded by a student, just like you, who decided to remain anonymous.
Samar State University

Comments

Please sign in or register to post comments.

Preview text

LESSON CONTENT

The field of network and Internet security consists of measures to deter, prevent, detect, and correct security violations that involve the transmission of information. That is a broad statement that covers a host of possibilities. The following are examples of security violations:

  1. User A transmits a file to user B. The file contains sensitive information (e., payroll records) that is to be protected from disclosure. User C, who is not authorized to read the file, is able to monitor the transmission and capture a copy of the file during its transmission.
  2. A network manager, D, transmits a message to a computer, E, under its management. The message instructs computer E to update an authorization file to include the identities of a number of new users who are to be given access to that computer. User F intercepts the message, alters its contents to add or delete entries, and then forwards the message to computer E, which accepts the message as coming from manager D and updates its authorization file accordingly.
  3. Rather than intercept a message, user F constructs its own message with the desired entries and transmits that message to computer E as if it had come from manager D. Computer E accepts the message as coming from manager D and updates its authorization file accordingly.
  4. An employee is fired without warning. The personnel manager sends a message to a server system to invalidate the employee’s account. When the invalidation is accomplished, the server is to post a notice to the employee’s file as confirmation of the action. The employee is able to intercept the message and delay it long enough to make a final access to the server to retrieve sensitive information. The message is then forwarded, the action taken, and the confirmation posted. The employee’s action may go unnoticed for some considerable time.
  5. A message is sent from a customer to a stockbroker with instructions for various transactions. Subsequently, the investments lose value and the customer denies sending the message.

Although this list by no means exhausts the possible types of network security violations, it illustrates the range of concerns of network security.

  1. Computer Security Concepts

Computer Security is the protection afforded to an automated information system in order to attain the applicable objectives of preserving the integrity, availability, and confidentiality of information system resources (includes hardware, software, firmware, information/data, and telecommunications).

Three key objectives that are at the heart of computer security:

a. Confidentiality: Preserving authorized restrictions on information access and disclosure, including means for protecting personal privacy and proprietary information. A loss of confidentiality is the unauthorized disclosure of information. This term covers two related concepts:

  • Data confidentiality: Assures that private or confidential information is not made available or disclosed to unauthorized individuals.

  • Privacy: Assures that individuals control or influence what information related to them may be collected and stored and by whom and to whom that information may be disclosed.

b. Integrity: Guarding against improper information modification or destruction, including ensuring information nonrepudiation and authenticity. A loss of integrity is the unauthorized modification or destruction of information. This term covers two related concepts:

  • Data integrity: Assures that information (both stored and in transmitted packets) and programs are changed only in a specified and authorized manner.
  • System integrity: Assures that a system performs its intended function in an unimpaired manner, free from deliberate or inadvertent unauthorized manipulation of the system.

c. Availability: Ensuring timely and reliable access to and use of information. Assures that systems work promptly and service is not denied to authorized users. A loss of availability is the disruption of access to or use of information or an information system.

These three concepts form what is often referred to as the CIA triad. The three concepts embody the fundamental security objectives for both data and for information and computing services. For example, the NIST standard FIPS 199 (Standards for Security Categorization of Federal Information and Information Systems) lists confidentiality, integrity, and availability as the three security objectives for information and for information systems. FIPS 199 provides a useful characterization of these three objectives in terms of requirements and the definition of a loss of security in each category:

Although the use of the CIA triad to define security objectives is well established, some in the security field feel that additional concepts are needed to present a complete picture (Figure 1). Two of the most commonly mentioned are as follows:

  • Authenticity: The property of being genuine and being able to be verified and trusted; confidence in the validity of a transmission, a message, or message originator. This means verifying that users are who they say they are and that each input arriving at the system came from a trusted source.

  • Accountability: The security goal that generates the requirement for actions of an entity to be traced uniquely to that entity. This supports nonrepudiation, deterrence, fault isolation, intrusion detection and prevention, and after-action recovery and legal action. Because truly secure systems are not yet an achievable goal, we must be able to trace a security breach to a responsible party. Systems must keep records of their activities to permit later forensic analysis to trace security breaches or to aid in transaction disputes.

Student grade information is an asset whose confidentiality is considered to be highly important by students. In the United States, the release of such information is regulated by the Family Educational Rights and Privacy Act (FERPA). Grade information should only be available to students, their parents, and employees that require the information to do their job. Student enrollment information may have a moderate confidentiality rating. While still covered by FERPA, this information is seen by more people on a daily basis, is less likely to be targeted than grade information, and results in less damage if disclosed. Directory information, such as lists of students or faculty or departmental lists, may be assigned a low confidentiality rating or indeed no rating. This information is typically freely available to the public and published on a school’s Web site.

INTEGRITY:

Several aspects of integrity are illustrated by the example of a hospital patient’s allergy information stored in a database. The doctor should be able to trust that the information is correct and current. Now suppose that an employee (e., a nurse) who is authorized to view and update this information deliberately falsifies the data to cause harm to the hospital. The database needs to be restored to a trusted basis quickly, and it should be possible to trace the error back to the person responsible. Patient allergy information is an example of an asset with a high requirement for integrity. Inaccurate information could result in serious harm or death to a patient and expose the hospital to massive liability.

An example of an asset that may be assigned a moderate level of integrity requirement is a Web site that offers a forum to registered users to discuss some specific topic. Either a registered user or a hacker could falsify some entries or deface the Web site. If the forum exists only for the enjoyment of the users, brings in little or no advertising revenue, and is not used for something important such as research, then potential damage is not severe. The Web master may experience some data, financial, and time loss.

An example of a low integrity requirement is an anonymous online poll. Many Web sites, such as news organizations, offer these polls to their users with very few safeguards. However, the inaccuracy and unscientific nature of such polls is well understood.

AVAILABILITY:

The more critical a component or service, the higher is the level of availability required. Consider a system that provides authentication services for critical systems, applications, and devices. An interruption of service results in the inability for customers to access computing resources and staff to access the resources they need to perform critical tasks. The loss of the service translates into a large financial loss in lost employee productivity and potential customer loss.

An example of an asset that would typically be rated as having a moderate availability requirement is a public Web site for a university; the Web site provides information for current and prospective students and donors. Such a site is not a critical component of the university’s information system, but its unavailability will cause some embarrassment.

An online telephone directory lookup application would be classified as a low availability requirement. Although the temporary loss of the application may be an annoyance, there are other ways to access the information, such as a hardcopy directory or the operator.

The Challenges of Computer Security

Computer and network security is both fascinating and complex. Some of the reasons follow:

  1. Security is not as simple as it might first appear to the novice. The requirements seem to be straightforward; indeed, most of the major requirements for security services can be given self-explanatory, one-word labels: confidentiality, authentication, nonrepudiation, or integrity. But the mechanisms used to meet those requirements can be quite complex, and understanding them may involve rather subtle reasoning.

  2. In developing a particular security mechanism or algorithm, one must always consider potential attacks on those security features. In many cases, successful attacks are designed by looking at the problem in a completely different way, therefore exploiting an unexpected weakness in the mechanism.

  3. Because of point 2, the procedures used to provide particular services are often counterintuitive. Typically, a security mechanism is complex, and it is not obvious from the statement of a particular requirement that such elaborate measures are needed. It is only when the various aspects of the threat are considered that elaborate security mechanisms make sense.

  4. Having designed various security mechanisms, it is necessary to decide where to use them. This is true both in terms of physical placement (e., at what points in a network are certain security mechanisms needed) and in a logical sense (e., at what layer or layers of an architecture such as TCP/IP [Transmission Control Protocol/Internet Protocol] should mechanisms be placed).

  5. Security mechanisms typically involve more than a particular algorithm or protocol. They also require that participants be in possession of some secret information (e., an encryption key), which raises questions about the creation, distribution, and protection of that secret information. There also may be a reliance on communications protocols whose behavior may complicate the task of developing the security mechanism. For example, if the proper functioning of the security mechanism requires setting time limits on the transit time of a message from sender to receiver, then any protocol or network that introduces variable, unpredictable delays may render such time limits meaningless.

  6. Computer and network security is essentially a battle of wits between a perpetrator who tries to find holes and the designer or administrator who tries to close them. The great advantage that the attacker has is that he or she need only find a single weakness, while the designer must find and eliminate all weaknesses to achieve perfect security.

  7. There is a natural tendency on the part of users and system managers to perceive little benefit from security investment until a security failure occurs.

  8. Security requires regular, even constant, monitoring, and this is difficult in today’s short-term, overloaded environment.

  9. Security is still too often an afterthought to be incorporated into a system after the design is complete rather than being an integral part of the design process.

  10. Many users and even security administrators view strong security as an impediment to efficient and user-friendly operation of an information system or use of information.

Passive attacks (Figure 2a) are in the nature of eavesdropping on, or monitoring of, transmissions. The goal of the opponent is to obtain information that is being transmitted. Two types of passive attacks are the release of message contents and traffic analysis.

The release of message contents is easily understood. A telephone conversation, an electronic mail message, and a transferred file may contain sensitive or confidential information. We would like to prevent an opponent from learning the contents of these transmissions.

A second type of passive attack, traffic analysis, is subtler. Suppose that we had a way of masking the contents of messages or other information traffic so that opponents, even if they captured the message, could not extract the information from the message. The common technique for masking contents is encryption. If we had encryption protection in place, an opponent might still be able to observe the pattern of these messages. The opponent could determine the location and identity of communicating hosts and could observe the frequency and length of messages being exchanged. This information might be useful in guessing the nature of the communication that was taking place.

Passive attacks are very difficult to detect, because they do not involve any alteration of the data. Typically, the message traffic is sent and received in an apparently normal fashion, and neither the sender nor receiver is aware that a third party has read the messages or observed the traffic pattern. However, it is feasible to prevent the success of these attacks, usually by means of encryption. Thus, the emphasis in dealing with passive attacks is on prevention rather than detection.

Active Attacks

Active attacks (Figure 2b) involve some modification of the data stream or the creation of a false stream and can be subdivided into four categories: masquerade, replay, modification of messages, and denial of service. A masquerade takes place when one entity pretends to be a different entity (path 2 of Figure 2b is active). A masquerade attack usually includes one of the other forms of active attack. For example, authentication sequences can be captured and replayed after a valid authentication sequence has taken place, thus enabling an authorized entity with few privileges to obtain extra privileges by impersonating an entity that has those privileges.

Replay involves the passive capture of a data unit and its subsequent retransmission to produce an unauthorized effect (paths 1, 2, and 3 active).

Modification of messages simply means that some portion of a legitimate message is altered, or that messages are delayed or reordered, to produce an unauthorized effect (paths 1 and 2 active). For example, a message meaning “Allow John Smith to read confidential file accounts” is modified to mean “Allow Fred Brown to read confidential file accounts.”

The denial of service prevents or inhibits the normal use or management of communications facilities (path 3 active). This attack may have a specific target; for example, an entity may suppress all messages directed to a particular destination (e., the security audit service). Another form of service denial is the disruption of an entire network, either by disabling the network

or by overloading it with messages so as to degrade performance.

X divides these services into five categories and fourteen specific services (Table 2). We look at each category in turn.

Authentication

The authentication service is concerned with assuring that a communication is authentic. In the case of a single message, such as a warning or alarm signal, the function of the authentication service is to assure the recipient that the message is from the source that it claims to be from. In the case of an ongoing interaction, such as the connection of a terminal to a host, two aspects are involved. First, at the time of connection initiation, the service assures that the two entities are authentic, that is, that each is the entity that it claims to be. Second, the service must assure that the connection is not interfered with in such a way that a third party can masquerade as one of the two legitimate parties for the purposes of unauthorized transmission or reception.

Two specific authentication services are defined in X:

  • Peer entity authentication: Provides for the corroboration of the identity of a peer entity in an association. Two entities are considered peers if they implement to same protocol in different systems; for example, two TCP modules in two communicating systems. Peer entity authentication is provided for use at the establishment of, or at times during the data transfer phase of, a connection. It attempts to provide confidence that an entity is not performing either a masquerade or an unauthorized replay of a previous connection.
  • Data origin authentication: Provides for the corroboration of the source of a data unit. It does not provide protection against the duplication or modification of data units. This type of service supports applications like electronic mail, where there are no prior interactions between the communicating entities.

Access Control

In the context of network security, access control is the ability to limit and control the access to host systems and applications via communications links. To achieve this, each entity trying to gain access must first be identified, or authenticated, so that access rights can be tailored to the individual.

Data Confidentiality

Confidentiality is the protection of transmitted data from passive attacks. With respect to the content of a data transmission, several levels of protection can be identified. The broadest service protects all user data transmitted between two users over a period of time. For example, when a TCP connection is set up between two systems, this broad protection prevents the release of any user data transmitted over the TCP connection. Narrower forms of this service can also be defined, including the protection of a single message or even specific fields within a message. These refinements are less useful than the broad approach and may even be more complex and expensive to implement.

The other aspect of confidentiality is the protection of traffic flow from analysis. This requires that an attacker not be able to observe the source and destination, frequency, length, or other characteristics of the traffic on a communications facility.

Data Integrity

As with confidentiality, integrity can apply to a stream of messages, a single message, or selected fields within a message. Again, the most useful and straightforward approach is total stream protection.

A connection-oriented integrity service, one that deals with a stream of messages, assures that messages are received as sent with no duplication, insertion, modification, reordering, or replays. The destruction of data is also covered under this service. Thus, the connection- oriented integrity service addresses both message stream modification and denial of service. On the other hand, a connectionless integrity service, one that deals with individual messages without regard to any larger context, generally provides protection against message modification only.

We can make a distinction between service with and without recovery. Because the integrity service relates to active attacks, we are concerned with detection rather than prevention. If a violation of integrity is detected, then the service may simply report this violation, and some other portion of software or human intervention is required to recover from the violation. Alternatively, there are mechanisms available to recover from the loss of integrity of data, as we will review subsequently. The incorporation of automated recovery mechanisms is, in general, the more attractive alternative.

Nonrepudiation

Nonrepudiation prevents either sender or receiver from denying a transmitted message. Thus, when a message is sent, the receiver can prove that the alleged sender in fact sent the message. Similarly, when a message is received, the sender can prove that the alleged receiver in fact received the message.

Availability Service

Both X and RFC 4949 define availability to be the property of a system or a system resource being accessible and usable upon demand by an authorized system entity, according to performance specifications for the system (i., a system is available if it provides services according to the system design whenever users request them). A variety of attacks can result in the loss of or reduction in availability. Some of these attacks are amenable to automated countermeasures, such as authentication and encryption, whereas others require some sort of physical action to prevent or recover from loss of availability of elements of a distributed system.

X treats availability as a property to be associated with various security services. However, it makes sense to call out specifically an availability service. An availability service is one that protects a system to ensure its availability. This service addresses the security concerns raised by denial-of-service attacks. It depends on proper management and control of system resources and thus depends on access control service and other security services.

allows data to be encrypted and subsequently decrypted. Irreversible encipherment mechanisms include hash algorithms and message authentication codes, which are used in digital signature and message authentication applications.

Table 3. Security Mechanisms (X)

Table 4, based on one in X, indicates the relationship between security services and security mechanisms.

Table 4. Relationship Between Security Services and Mechanisms

Economy of mechanism means that the design of security measures embodied in both hardware and software should be as simple and small as possible. The motivation for this principle is that relatively simple, small design is easier to test and verify thoroughly. With a complex design, there are many more opportunities for an adversary to discover subtle weaknesses to exploit that may be difficult to spot ahead of time. The more complex the mechanism, the more likely it is to possess exploitable flaws. Simple mechanisms tend to have fewer exploitable flaws and require less maintenance. Further, because configuration management issues are simplified, updating or replacing a simple mechanism becomes a less intensive process. In practice, this is perhaps the most difficult principle to honor. There is a constant demand for new features in both hardware and software, complicating the security design task. The best that can be done is to keep this principle in mind during system design to try to eliminate unnecessary complexity.

Fail-safe defaults means that access decisions should be based on permission rather than exclusion. That is, the default situation is lack of access, and the protection scheme identifies conditions under which access is permitted. This approach exhibits a better failure mode than the alternative approach, where the default is to permit access. A design or implementation mistake in a mechanism that gives explicit permission tends to fail by refusing permission, a safe situation that can be quickly detected. On the other hand, a design or implementation mistake in a mechanism that explicitly excludes access tends to fail by allowing access, a failure that may long go unnoticed in normal use. Most file access systems and virtually all protected services on client/server systems use fail-safe defaults.

Complete mediation means that every access must be checked against the access control mechanism. Systems should not rely on access decisions retrieved from a cache. In a system designed to operate continuously, this principle requires that, if access decisions are remembered for future use, careful consideration be given to how changes in authority are propagated into such local memories. File access systems appear to provide an example of a system that complies with this principle. However, typically, once a user has opened a file, no check is made to see if permissions change. To fully implement complete mediation, every time a user reads a field or record in a file, or a data item in a database, the system must exercise access control. This resource-intensive approach is rarely used.

Open design means that the design of a security mechanism should be open rather than secret. For example, although encryption keys must be secret, encryption algorithms should be open to public scrutiny. The algorithms can then be reviewed by many experts, and users can therefore have high confidence in them. This is the philosophy behind the National Institute of Standards and Technology (NIST) program of standardizing encryption and hash algorithms, and has led to the widespread adoption of NIST-approved algorithms.

Separation of privilege is defined in [SALT75] as a practice in which multiple privilege attributes are required to achieve access to a restricted resource. A good example of this is multifactor user authentication, which requires the use of multiple techniques, such as a password and a smart card, to authorize a user. The term is also now applied to any technique in which a program is divided into parts that are limited to the specific privileges they require in order to perform a specific task. This is used to mitigate the potential damage of a computer security attack. One example of this latter interpretation of the principle is removing high privilege operations to another process and running that process with the higher privileges required to perform its tasks. Day-today interfaces are executed in a lower privileged process.

Least privilege means that every process and every user of the system should operate using the least set of privileges necessary to perform the task. A good example of the use of this principle is role-based access control. The system security policy can identify and define the various roles of users or processes. Each role is assigned only those permissions needed to perform its functions. Each permission specifies a permitted access to a particular resource (such as read and write access to a specified file or directory, connect access to a given host and port). Unless a permission is granted explicitly, the user or process should not be able to access the protected resource. More generally, any access control system should allow each user only the privileges that are authorized for that user. There is also a temporal aspect to the least privilege principle. For example, system programs or administrators who have special privileges should have those privileges only when necessary; when they are doing ordinary activities the privileges should be withdrawn. Leaving them in place just opens the door to accidents.

Least common mechanism means that the design should minimize the functions shared by different users, providing mutual security. This principle helps reduce the number of unintended communication paths and reduces the amount of hardware and software on which all users depend, thus making it easier to verify if there are any undesirable security implications.

Psychological acceptability implies that the security mechanisms should not interfere unduly with the work of users, while at the same time meeting the needs of those who authorize access. If security mechanisms hinder the usability or accessibility of resources, then users may opt to turn off those mechanisms. Where possible, security mechanisms should be transparent to the users of the system or at most introduce minimal obstruction. In addition to not being intrusive or burdensome, security procedures must reflect the user’s mental model of protection. If the protection procedures do not make sense to the user or if the user must translate his image of protection into a substantially different protocol, the user is likely to make errors.

Isolation is a principle that applies in three contexts. First, public access systems should be isolated from critical resources (data, processes, etc.) to prevent disclosure or tampering. In cases where the sensitivity or criticality of the information is high, organizations may want to limit the number of systems on which that data is stored and isolate them, either physically or logically. Physical isolation may include ensuring that no physical connection exists between an organization’s public access information resources and an organization’s critical information. When implementing logical isolation solutions, layers of security services and mechanisms should be established between public systems and secure systems responsible for protecting critical resources. Second, the processes and files of individual users should be isolated from one another except where it is explicitly desired. All modern operating systems provide facilities for such isolation, so that individual users have separate, isolated process space, memory space, and file space, with protections for preventing unauthorized access. And finally, security mechanisms should be isolated in the sense of preventing access to those mechanisms. For example, logical access control may provide a means of isolating cryptographic software from other parts of the host system and for protecting cryptographic software from tampering and the keys from replacement or disclosure.

Encapsulation can be viewed as a specific form of isolation based on object-oriented functionality. Protection is provided by encapsulating a collection of procedures and data objects in a domain of its own so that the internal structure of a data object is accessible only to the

  • Network attack surface: This category refers to vulnerabilities over an enterprise network, wide-area network, or the Internet. Included in this category are network protocol vulnerabilities, such as those used for a denial-of-service attack, disruption of communications links, and various forms of intruder attacks.

  • Software attack surface: This refers to vulnerabilities in application, utility, or operating system code. A particular focus in this category is Web server software.

  • Human attack surface: This category refers to vulnerabilities created by personnel or outsiders, such as social engineering, human error, and trusted insiders.

An attack surface analysis is a useful technique for assessing the scale and severity of threats to a system. A systematic analysis of points of vulnerability makes developers and security analysts aware of where security mechanisms are required. Once an attack surface is defined, designers may be able to find ways to make the surface smaller, thus making the task of the adversary more difficult. The attack surface also provides guidance on setting priorities for testing, strengthening security measures, and modifying the service or application.

As illustrated in Figure 3, the use of layering, or defense in depth, and attack surface reduction complement each other in mitigating security risk.

Figure 3. Defense in Depth and Attack Surface

Attack Trees

An attack tree is a branching, hierarchical data structure that represents a set of potential techniques for exploiting security vulnerabilities [MAUW05, MOOR01, SCHN99]. The security incident that is the goal of the attack is represented as the root node of the tree, and the ways

that an attacker could reach that goal are iteratively and incrementally represented as branches and subnodes of the tree. Each subnode defines a subgoal, and each subgoal may have its own set of further subgoals, and so on. The final nodes on the paths outward from the root, that is, the leaf nodes, represent different ways to initiate an attack. Each node other than a leaf is either an ANDnode or an OR-node. To achieve the goal represented by an AND-node, the subgoals represented by all of that node’s subnodes must be achieved; and for an OR-node, at least one of the subgoals must be achieved. Branches can be labeled with values representing difficulty, cost, or other attack attributes, so that alternative attacks can be compared.

The motivation for the use of attack trees is to effectively exploit the information available on attack patterns. Organizations such as CERT publish security advisories that have enabled the development of a body of knowledge about both general attack strategies and specific attack patterns. Security analysts can use the attack tree to document security attacks in a structured form that reveals key vulnerabilities. The attack tree can guide both the design of systems and applications, and the choice and strength of countermeasures.

Figure 4, based on a figure in [DIMI07], is an example of an attack tree analysis for an Internet banking authentication application. The root of the tree is the objective of the attacker, which is to compromise a user’s account. The shaded boxes on the tree are the leaf nodes, which represent events that comprise the attacks. Note that in this tree, all the nodes other than leaf nodes are OR-nodes.

Was this document helpful?

Data Communications - IM6

Course: Electronics Engineering (CR 061)

95 Documents
Students shared 95 documents in this course
Was this document helpful?
LESSON CONTENT
The field of network and Internet security consists of measures to deter, prevent, detect, and correct
security violations that involve the transmission of information. That is a broad statement that covers a
host of possibilities. The following are examples of security violations:
1. User A transmits a file to user B. The file contains sensitive information (e.g., payroll records) that is
to be protected from disclosure. User C, who is not authorized to read the file, is able to monitor the
transmission and capture a copy of the file during its transmission.
2. A network manager, D, transmits a message to a computer, E, under its management. The message
instructs computer E to update an authorization file to include the identities of a number of new
users who are to be given access to that computer. User F intercepts the message, alters its
contents to add or delete entries, and then forwards the message to computer E, which accepts the
message as coming from manager D and updates its authorization file accordingly.
3. Rather than intercept a message, user F constructs its own message with the desired entries and
transmits that message to computer E as if it had come from manager D. Computer E accepts the
message as coming from manager D and updates its authorization file accordingly.
4. An employee is fired without warning. The personnel manager sends a message to a server system
to invalidate the employee’s account. When the invalidation is accomplished, the server is to post a
notice to the employee’s file as confirmation of the action. The employee is able to intercept the
message and delay it long enough to make a final access to the server to retrieve sensitive
information. The message is then forwarded, the action taken, and the confirmation posted. The
employee’s action may go unnoticed for some considerable time.
5. A message is sent from a customer to a stockbroker with instructions for various transactions.
Subsequently, the investments lose value and the customer denies sending the message.
Although this list by no means exhausts the possible types of network security violations, it illustrates
the range of concerns of network security.
1. Computer Security Concepts
Computer Security is the protection afforded to an automated information system in order to
attain the applicable objectives of preserving the integrity, availability, and confidentiality of
information system resources (includes hardware, software, firmware, information/data, and
telecommunications).
Three key objectives that are at the heart of computer security:
a. Confidentiality: Preserving authorized restrictions on information access and disclosure,
including means for protecting personal privacy and proprietary information. A loss of
confidentiality is the unauthorized disclosure of information. This term covers two related
concepts:
Data confidentiality: Assures that private or confidential information is not made
available or disclosed to unauthorized individuals.